Metamath Proof Explorer


Theorem elpwd

Description: Membership in a power class. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses elpwd.1 ( 𝜑𝐴𝑉 )
elpwd.2 ( 𝜑𝐴𝐵 )
Assertion elpwd ( 𝜑𝐴 ∈ 𝒫 𝐵 )

Proof

Step Hyp Ref Expression
1 elpwd.1 ( 𝜑𝐴𝑉 )
2 elpwd.2 ( 𝜑𝐴𝐵 )
3 elpwg ( 𝐴𝑉 → ( 𝐴 ∈ 𝒫 𝐵𝐴𝐵 ) )
4 1 3 syl ( 𝜑 → ( 𝐴 ∈ 𝒫 𝐵𝐴𝐵 ) )
5 2 4 mpbird ( 𝜑𝐴 ∈ 𝒫 𝐵 )