Metamath Proof Explorer
Description: Membership in a power class. (Contributed by Glauco Siliprandi, 11-Oct-2020)
|
|
Ref |
Expression |
|
Hypotheses |
elpwd.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
|
|
elpwd.2 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
|
Assertion |
elpwd |
⊢ ( 𝜑 → 𝐴 ∈ 𝒫 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
elpwd.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
elpwd.2 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
3 |
|
elpwg |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵 ) ) |
4 |
1 3
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵 ) ) |
5 |
2 4
|
mpbird |
⊢ ( 𝜑 → 𝐴 ∈ 𝒫 𝐵 ) |