Metamath Proof Explorer


Theorem elpwdifcl

Description: Closure of class difference with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020)

Ref Expression
Hypothesis elpwincl.1 ( 𝜑𝐴 ∈ 𝒫 𝐶 )
Assertion elpwdifcl ( 𝜑 → ( 𝐴𝐵 ) ∈ 𝒫 𝐶 )

Proof

Step Hyp Ref Expression
1 elpwincl.1 ( 𝜑𝐴 ∈ 𝒫 𝐶 )
2 1 elpwid ( 𝜑𝐴𝐶 )
3 2 ssdifssd ( 𝜑 → ( 𝐴𝐵 ) ⊆ 𝐶 )
4 difexg ( 𝐴 ∈ 𝒫 𝐶 → ( 𝐴𝐵 ) ∈ V )
5 elpwg ( ( 𝐴𝐵 ) ∈ V → ( ( 𝐴𝐵 ) ∈ 𝒫 𝐶 ↔ ( 𝐴𝐵 ) ⊆ 𝐶 ) )
6 1 4 5 3syl ( 𝜑 → ( ( 𝐴𝐵 ) ∈ 𝒫 𝐶 ↔ ( 𝐴𝐵 ) ⊆ 𝐶 ) )
7 3 6 mpbird ( 𝜑 → ( 𝐴𝐵 ) ∈ 𝒫 𝐶 )