Description: Closure of class difference with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | elpwincl.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝒫 𝐶 ) | |
Assertion | elpwdifcl | ⊢ ( 𝜑 → ( 𝐴 ∖ 𝐵 ) ∈ 𝒫 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwincl.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝒫 𝐶 ) | |
2 | 1 | elpwid | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |
3 | 2 | ssdifssd | ⊢ ( 𝜑 → ( 𝐴 ∖ 𝐵 ) ⊆ 𝐶 ) |
4 | difexg | ⊢ ( 𝐴 ∈ 𝒫 𝐶 → ( 𝐴 ∖ 𝐵 ) ∈ V ) | |
5 | elpwg | ⊢ ( ( 𝐴 ∖ 𝐵 ) ∈ V → ( ( 𝐴 ∖ 𝐵 ) ∈ 𝒫 𝐶 ↔ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐶 ) ) | |
6 | 1 4 5 | 3syl | ⊢ ( 𝜑 → ( ( 𝐴 ∖ 𝐵 ) ∈ 𝒫 𝐶 ↔ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐶 ) ) |
7 | 3 6 | mpbird | ⊢ ( 𝜑 → ( 𝐴 ∖ 𝐵 ) ∈ 𝒫 𝐶 ) |