Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆 ) → 𝑆 ⊆ 𝑉 ) |
2 |
1
|
sselda |
⊢ ( ( ( 𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑉 ) |
3 |
|
df-nel |
⊢ ( 𝐴 ∉ 𝑆 ↔ ¬ 𝐴 ∈ 𝑆 ) |
4 |
3
|
biimpi |
⊢ ( 𝐴 ∉ 𝑆 → ¬ 𝐴 ∈ 𝑆 ) |
5 |
4
|
3ad2ant3 |
⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆 ) → ¬ 𝐴 ∈ 𝑆 ) |
6 |
5
|
anim1ci |
⊢ ( ( ( 𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ∈ 𝑆 ∧ ¬ 𝐴 ∈ 𝑆 ) ) |
7 |
|
nelne2 |
⊢ ( ( 𝑥 ∈ 𝑆 ∧ ¬ 𝐴 ∈ 𝑆 ) → 𝑥 ≠ 𝐴 ) |
8 |
6 7
|
syl |
⊢ ( ( ( 𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ≠ 𝐴 ) |
9 |
|
eldifsn |
⊢ ( 𝑥 ∈ ( 𝑉 ∖ { 𝐴 } ) ↔ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 𝐴 ) ) |
10 |
2 8 9
|
sylanbrc |
⊢ ( ( ( 𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ ( 𝑉 ∖ { 𝐴 } ) ) |
11 |
10
|
ex |
⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆 ) → ( 𝑥 ∈ 𝑆 → 𝑥 ∈ ( 𝑉 ∖ { 𝐴 } ) ) ) |
12 |
11
|
ssrdv |
⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆 ) → 𝑆 ⊆ ( 𝑉 ∖ { 𝐴 } ) ) |
13 |
|
elpwg |
⊢ ( 𝑆 ∈ 𝑊 → ( 𝑆 ∈ 𝒫 ( 𝑉 ∖ { 𝐴 } ) ↔ 𝑆 ⊆ ( 𝑉 ∖ { 𝐴 } ) ) ) |
14 |
13
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆 ) → ( 𝑆 ∈ 𝒫 ( 𝑉 ∖ { 𝐴 } ) ↔ 𝑆 ⊆ ( 𝑉 ∖ { 𝐴 } ) ) ) |
15 |
12 14
|
mpbird |
⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆 ) → 𝑆 ∈ 𝒫 ( 𝑉 ∖ { 𝐴 } ) ) |