| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp2 | ⊢ ( ( 𝑆  ∈  𝑊  ∧  𝑆  ⊆  𝑉  ∧  𝐴  ∉  𝑆 )  →  𝑆  ⊆  𝑉 ) | 
						
							| 2 | 1 | sselda | ⊢ ( ( ( 𝑆  ∈  𝑊  ∧  𝑆  ⊆  𝑉  ∧  𝐴  ∉  𝑆 )  ∧  𝑥  ∈  𝑆 )  →  𝑥  ∈  𝑉 ) | 
						
							| 3 |  | df-nel | ⊢ ( 𝐴  ∉  𝑆  ↔  ¬  𝐴  ∈  𝑆 ) | 
						
							| 4 | 3 | biimpi | ⊢ ( 𝐴  ∉  𝑆  →  ¬  𝐴  ∈  𝑆 ) | 
						
							| 5 | 4 | 3ad2ant3 | ⊢ ( ( 𝑆  ∈  𝑊  ∧  𝑆  ⊆  𝑉  ∧  𝐴  ∉  𝑆 )  →  ¬  𝐴  ∈  𝑆 ) | 
						
							| 6 | 5 | anim1ci | ⊢ ( ( ( 𝑆  ∈  𝑊  ∧  𝑆  ⊆  𝑉  ∧  𝐴  ∉  𝑆 )  ∧  𝑥  ∈  𝑆 )  →  ( 𝑥  ∈  𝑆  ∧  ¬  𝐴  ∈  𝑆 ) ) | 
						
							| 7 |  | nelne2 | ⊢ ( ( 𝑥  ∈  𝑆  ∧  ¬  𝐴  ∈  𝑆 )  →  𝑥  ≠  𝐴 ) | 
						
							| 8 | 6 7 | syl | ⊢ ( ( ( 𝑆  ∈  𝑊  ∧  𝑆  ⊆  𝑉  ∧  𝐴  ∉  𝑆 )  ∧  𝑥  ∈  𝑆 )  →  𝑥  ≠  𝐴 ) | 
						
							| 9 |  | eldifsn | ⊢ ( 𝑥  ∈  ( 𝑉  ∖  { 𝐴 } )  ↔  ( 𝑥  ∈  𝑉  ∧  𝑥  ≠  𝐴 ) ) | 
						
							| 10 | 2 8 9 | sylanbrc | ⊢ ( ( ( 𝑆  ∈  𝑊  ∧  𝑆  ⊆  𝑉  ∧  𝐴  ∉  𝑆 )  ∧  𝑥  ∈  𝑆 )  →  𝑥  ∈  ( 𝑉  ∖  { 𝐴 } ) ) | 
						
							| 11 | 10 | ex | ⊢ ( ( 𝑆  ∈  𝑊  ∧  𝑆  ⊆  𝑉  ∧  𝐴  ∉  𝑆 )  →  ( 𝑥  ∈  𝑆  →  𝑥  ∈  ( 𝑉  ∖  { 𝐴 } ) ) ) | 
						
							| 12 | 11 | ssrdv | ⊢ ( ( 𝑆  ∈  𝑊  ∧  𝑆  ⊆  𝑉  ∧  𝐴  ∉  𝑆 )  →  𝑆  ⊆  ( 𝑉  ∖  { 𝐴 } ) ) | 
						
							| 13 |  | elpwg | ⊢ ( 𝑆  ∈  𝑊  →  ( 𝑆  ∈  𝒫  ( 𝑉  ∖  { 𝐴 } )  ↔  𝑆  ⊆  ( 𝑉  ∖  { 𝐴 } ) ) ) | 
						
							| 14 | 13 | 3ad2ant1 | ⊢ ( ( 𝑆  ∈  𝑊  ∧  𝑆  ⊆  𝑉  ∧  𝐴  ∉  𝑆 )  →  ( 𝑆  ∈  𝒫  ( 𝑉  ∖  { 𝐴 } )  ↔  𝑆  ⊆  ( 𝑉  ∖  { 𝐴 } ) ) ) | 
						
							| 15 | 12 14 | mpbird | ⊢ ( ( 𝑆  ∈  𝑊  ∧  𝑆  ⊆  𝑉  ∧  𝐴  ∉  𝑆 )  →  𝑆  ∈  𝒫  ( 𝑉  ∖  { 𝐴 } ) ) |