Metamath Proof Explorer


Theorem elpwdifsn

Description: A subset of a set is an element of the power set of the difference of the set with a singleton if the subset does not contain the singleton element. (Contributed by AV, 10-Jan-2020)

Ref Expression
Assertion elpwdifsn ( ( 𝑆𝑊𝑆𝑉𝐴𝑆 ) → 𝑆 ∈ 𝒫 ( 𝑉 ∖ { 𝐴 } ) )

Proof

Step Hyp Ref Expression
1 simp2 ( ( 𝑆𝑊𝑆𝑉𝐴𝑆 ) → 𝑆𝑉 )
2 1 sselda ( ( ( 𝑆𝑊𝑆𝑉𝐴𝑆 ) ∧ 𝑥𝑆 ) → 𝑥𝑉 )
3 df-nel ( 𝐴𝑆 ↔ ¬ 𝐴𝑆 )
4 3 biimpi ( 𝐴𝑆 → ¬ 𝐴𝑆 )
5 4 3ad2ant3 ( ( 𝑆𝑊𝑆𝑉𝐴𝑆 ) → ¬ 𝐴𝑆 )
6 5 anim1ci ( ( ( 𝑆𝑊𝑆𝑉𝐴𝑆 ) ∧ 𝑥𝑆 ) → ( 𝑥𝑆 ∧ ¬ 𝐴𝑆 ) )
7 nelne2 ( ( 𝑥𝑆 ∧ ¬ 𝐴𝑆 ) → 𝑥𝐴 )
8 6 7 syl ( ( ( 𝑆𝑊𝑆𝑉𝐴𝑆 ) ∧ 𝑥𝑆 ) → 𝑥𝐴 )
9 eldifsn ( 𝑥 ∈ ( 𝑉 ∖ { 𝐴 } ) ↔ ( 𝑥𝑉𝑥𝐴 ) )
10 2 8 9 sylanbrc ( ( ( 𝑆𝑊𝑆𝑉𝐴𝑆 ) ∧ 𝑥𝑆 ) → 𝑥 ∈ ( 𝑉 ∖ { 𝐴 } ) )
11 10 ex ( ( 𝑆𝑊𝑆𝑉𝐴𝑆 ) → ( 𝑥𝑆𝑥 ∈ ( 𝑉 ∖ { 𝐴 } ) ) )
12 11 ssrdv ( ( 𝑆𝑊𝑆𝑉𝐴𝑆 ) → 𝑆 ⊆ ( 𝑉 ∖ { 𝐴 } ) )
13 elpwg ( 𝑆𝑊 → ( 𝑆 ∈ 𝒫 ( 𝑉 ∖ { 𝐴 } ) ↔ 𝑆 ⊆ ( 𝑉 ∖ { 𝐴 } ) ) )
14 13 3ad2ant1 ( ( 𝑆𝑊𝑆𝑉𝐴𝑆 ) → ( 𝑆 ∈ 𝒫 ( 𝑉 ∖ { 𝐴 } ) ↔ 𝑆 ⊆ ( 𝑉 ∖ { 𝐴 } ) ) )
15 12 14 mpbird ( ( 𝑆𝑊𝑆𝑉𝐴𝑆 ) → 𝑆 ∈ 𝒫 ( 𝑉 ∖ { 𝐴 } ) )