Metamath Proof Explorer


Theorem elpwi2

Description: Membership in a power class. (Contributed by Glauco Siliprandi, 3-Mar-2021) (Proof shortened by Wolf Lammen, 26-May-2024)

Ref Expression
Hypotheses elpwi2.1 𝐵𝑉
elpwi2.2 𝐴𝐵
Assertion elpwi2 𝐴 ∈ 𝒫 𝐵

Proof

Step Hyp Ref Expression
1 elpwi2.1 𝐵𝑉
2 elpwi2.2 𝐴𝐵
3 1 elexi 𝐵 ∈ V
4 3 elpw2 ( 𝐴 ∈ 𝒫 𝐵𝐴𝐵 )
5 2 4 mpbir 𝐴 ∈ 𝒫 𝐵