Metamath Proof Explorer


Theorem elpwincl1

Description: Closure of intersection with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020)

Ref Expression
Hypothesis elpwincl.1 ( 𝜑𝐴 ∈ 𝒫 𝐶 )
Assertion elpwincl1 ( 𝜑 → ( 𝐴𝐵 ) ∈ 𝒫 𝐶 )

Proof

Step Hyp Ref Expression
1 elpwincl.1 ( 𝜑𝐴 ∈ 𝒫 𝐶 )
2 elpwi ( 𝐴 ∈ 𝒫 𝐶𝐴𝐶 )
3 ssinss1 ( 𝐴𝐶 → ( 𝐴𝐵 ) ⊆ 𝐶 )
4 1 2 3 3syl ( 𝜑 → ( 𝐴𝐵 ) ⊆ 𝐶 )
5 inex1g ( 𝐴 ∈ 𝒫 𝐶 → ( 𝐴𝐵 ) ∈ V )
6 elpwg ( ( 𝐴𝐵 ) ∈ V → ( ( 𝐴𝐵 ) ∈ 𝒫 𝐶 ↔ ( 𝐴𝐵 ) ⊆ 𝐶 ) )
7 1 5 6 3syl ( 𝜑 → ( ( 𝐴𝐵 ) ∈ 𝒫 𝐶 ↔ ( 𝐴𝐵 ) ⊆ 𝐶 ) )
8 4 7 mpbird ( 𝜑 → ( 𝐴𝐵 ) ∈ 𝒫 𝐶 )