| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							elpwiuncl.1 | 
							⊢ ( 𝜑  →  𝐴  ∈  𝑉 )  | 
						
						
							| 2 | 
							
								
							 | 
							elpwiuncl.2 | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  𝒫  𝐶 )  | 
						
						
							| 3 | 
							
								2
							 | 
							elpwid | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ⊆  𝐶 )  | 
						
						
							| 4 | 
							
								3
							 | 
							ralrimiva | 
							⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝐴 𝐵  ⊆  𝐶 )  | 
						
						
							| 5 | 
							
								
							 | 
							iunss | 
							⊢ ( ∪  𝑘  ∈  𝐴 𝐵  ⊆  𝐶  ↔  ∀ 𝑘  ∈  𝐴 𝐵  ⊆  𝐶 )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							sylibr | 
							⊢ ( 𝜑  →  ∪  𝑘  ∈  𝐴 𝐵  ⊆  𝐶 )  | 
						
						
							| 7 | 
							
								2
							 | 
							ralrimiva | 
							⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝐴 𝐵  ∈  𝒫  𝐶 )  | 
						
						
							| 8 | 
							
								1 7
							 | 
							jca | 
							⊢ ( 𝜑  →  ( 𝐴  ∈  𝑉  ∧  ∀ 𝑘  ∈  𝐴 𝐵  ∈  𝒫  𝐶 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							iunexg | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  ∀ 𝑘  ∈  𝐴 𝐵  ∈  𝒫  𝐶 )  →  ∪  𝑘  ∈  𝐴 𝐵  ∈  V )  | 
						
						
							| 10 | 
							
								
							 | 
							elpwg | 
							⊢ ( ∪  𝑘  ∈  𝐴 𝐵  ∈  V  →  ( ∪  𝑘  ∈  𝐴 𝐵  ∈  𝒫  𝐶  ↔  ∪  𝑘  ∈  𝐴 𝐵  ⊆  𝐶 ) )  | 
						
						
							| 11 | 
							
								8 9 10
							 | 
							3syl | 
							⊢ ( 𝜑  →  ( ∪  𝑘  ∈  𝐴 𝐵  ∈  𝒫  𝐶  ↔  ∪  𝑘  ∈  𝐴 𝐵  ⊆  𝐶 ) )  | 
						
						
							| 12 | 
							
								6 11
							 | 
							mpbird | 
							⊢ ( 𝜑  →  ∪  𝑘  ∈  𝐴 𝐵  ∈  𝒫  𝐶 )  |