Metamath Proof Explorer


Theorem elpwiuncl

Description: Closure of indexed union with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 27-May-2020)

Ref Expression
Hypotheses elpwiuncl.1 ( 𝜑𝐴𝑉 )
elpwiuncl.2 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ 𝒫 𝐶 )
Assertion elpwiuncl ( 𝜑 𝑘𝐴 𝐵 ∈ 𝒫 𝐶 )

Proof

Step Hyp Ref Expression
1 elpwiuncl.1 ( 𝜑𝐴𝑉 )
2 elpwiuncl.2 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ 𝒫 𝐶 )
3 2 elpwid ( ( 𝜑𝑘𝐴 ) → 𝐵𝐶 )
4 3 ralrimiva ( 𝜑 → ∀ 𝑘𝐴 𝐵𝐶 )
5 iunss ( 𝑘𝐴 𝐵𝐶 ↔ ∀ 𝑘𝐴 𝐵𝐶 )
6 4 5 sylibr ( 𝜑 𝑘𝐴 𝐵𝐶 )
7 2 ralrimiva ( 𝜑 → ∀ 𝑘𝐴 𝐵 ∈ 𝒫 𝐶 )
8 1 7 jca ( 𝜑 → ( 𝐴𝑉 ∧ ∀ 𝑘𝐴 𝐵 ∈ 𝒫 𝐶 ) )
9 iunexg ( ( 𝐴𝑉 ∧ ∀ 𝑘𝐴 𝐵 ∈ 𝒫 𝐶 ) → 𝑘𝐴 𝐵 ∈ V )
10 elpwg ( 𝑘𝐴 𝐵 ∈ V → ( 𝑘𝐴 𝐵 ∈ 𝒫 𝐶 𝑘𝐴 𝐵𝐶 ) )
11 8 9 10 3syl ( 𝜑 → ( 𝑘𝐴 𝐵 ∈ 𝒫 𝐶 𝑘𝐴 𝐵𝐶 ) )
12 6 11 mpbird ( 𝜑 𝑘𝐴 𝐵 ∈ 𝒫 𝐶 )