Metamath Proof Explorer


Theorem elpwpwel

Description: A class belongs to a double power class if and only if its union belongs to the power class. (Contributed by BJ, 22-Jan-2023)

Ref Expression
Assertion elpwpwel ( 𝐴 ∈ 𝒫 𝒫 𝐵 𝐴 ∈ 𝒫 𝐵 )

Proof

Step Hyp Ref Expression
1 uniexb ( 𝐴 ∈ V ↔ 𝐴 ∈ V )
2 1 anbi1i ( ( 𝐴 ∈ V ∧ 𝐴𝐵 ) ↔ ( 𝐴 ∈ V ∧ 𝐴𝐵 ) )
3 elpwpw ( 𝐴 ∈ 𝒫 𝒫 𝐵 ↔ ( 𝐴 ∈ V ∧ 𝐴𝐵 ) )
4 elpwb ( 𝐴 ∈ 𝒫 𝐵 ↔ ( 𝐴 ∈ V ∧ 𝐴𝐵 ) )
5 2 3 4 3bitr4i ( 𝐴 ∈ 𝒫 𝒫 𝐵 𝐴 ∈ 𝒫 𝐵 )