Step |
Hyp |
Ref |
Expression |
1 |
|
eldifpw.1 |
⊢ 𝐶 ∈ V |
2 |
|
elex |
⊢ ( 𝐴 ∈ 𝒫 ( 𝐵 ∪ 𝐶 ) → 𝐴 ∈ V ) |
3 |
|
elex |
⊢ ( ( 𝐴 ∖ 𝐶 ) ∈ 𝒫 𝐵 → ( 𝐴 ∖ 𝐶 ) ∈ V ) |
4 |
|
difex2 |
⊢ ( 𝐶 ∈ V → ( 𝐴 ∈ V ↔ ( 𝐴 ∖ 𝐶 ) ∈ V ) ) |
5 |
1 4
|
ax-mp |
⊢ ( 𝐴 ∈ V ↔ ( 𝐴 ∖ 𝐶 ) ∈ V ) |
6 |
3 5
|
sylibr |
⊢ ( ( 𝐴 ∖ 𝐶 ) ∈ 𝒫 𝐵 → 𝐴 ∈ V ) |
7 |
|
elpwg |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ 𝒫 ( 𝐵 ∪ 𝐶 ) ↔ 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) ) ) |
8 |
|
uncom |
⊢ ( 𝐵 ∪ 𝐶 ) = ( 𝐶 ∪ 𝐵 ) |
9 |
8
|
sseq2i |
⊢ ( 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) ↔ 𝐴 ⊆ ( 𝐶 ∪ 𝐵 ) ) |
10 |
|
ssundif |
⊢ ( 𝐴 ⊆ ( 𝐶 ∪ 𝐵 ) ↔ ( 𝐴 ∖ 𝐶 ) ⊆ 𝐵 ) |
11 |
9 10
|
bitri |
⊢ ( 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) ↔ ( 𝐴 ∖ 𝐶 ) ⊆ 𝐵 ) |
12 |
|
difexg |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∖ 𝐶 ) ∈ V ) |
13 |
|
elpwg |
⊢ ( ( 𝐴 ∖ 𝐶 ) ∈ V → ( ( 𝐴 ∖ 𝐶 ) ∈ 𝒫 𝐵 ↔ ( 𝐴 ∖ 𝐶 ) ⊆ 𝐵 ) ) |
14 |
12 13
|
syl |
⊢ ( 𝐴 ∈ V → ( ( 𝐴 ∖ 𝐶 ) ∈ 𝒫 𝐵 ↔ ( 𝐴 ∖ 𝐶 ) ⊆ 𝐵 ) ) |
15 |
11 14
|
bitr4id |
⊢ ( 𝐴 ∈ V → ( 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) ↔ ( 𝐴 ∖ 𝐶 ) ∈ 𝒫 𝐵 ) ) |
16 |
7 15
|
bitrd |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ 𝒫 ( 𝐵 ∪ 𝐶 ) ↔ ( 𝐴 ∖ 𝐶 ) ∈ 𝒫 𝐵 ) ) |
17 |
2 6 16
|
pm5.21nii |
⊢ ( 𝐴 ∈ 𝒫 ( 𝐵 ∪ 𝐶 ) ↔ ( 𝐴 ∖ 𝐶 ) ∈ 𝒫 𝐵 ) |