Metamath Proof Explorer


Theorem elpwun

Description: Membership in the power class of a union. (Contributed by NM, 26-Mar-2007)

Ref Expression
Hypothesis eldifpw.1 𝐶 ∈ V
Assertion elpwun ( 𝐴 ∈ 𝒫 ( 𝐵𝐶 ) ↔ ( 𝐴𝐶 ) ∈ 𝒫 𝐵 )

Proof

Step Hyp Ref Expression
1 eldifpw.1 𝐶 ∈ V
2 elex ( 𝐴 ∈ 𝒫 ( 𝐵𝐶 ) → 𝐴 ∈ V )
3 elex ( ( 𝐴𝐶 ) ∈ 𝒫 𝐵 → ( 𝐴𝐶 ) ∈ V )
4 difex2 ( 𝐶 ∈ V → ( 𝐴 ∈ V ↔ ( 𝐴𝐶 ) ∈ V ) )
5 1 4 ax-mp ( 𝐴 ∈ V ↔ ( 𝐴𝐶 ) ∈ V )
6 3 5 sylibr ( ( 𝐴𝐶 ) ∈ 𝒫 𝐵𝐴 ∈ V )
7 elpwg ( 𝐴 ∈ V → ( 𝐴 ∈ 𝒫 ( 𝐵𝐶 ) ↔ 𝐴 ⊆ ( 𝐵𝐶 ) ) )
8 uncom ( 𝐵𝐶 ) = ( 𝐶𝐵 )
9 8 sseq2i ( 𝐴 ⊆ ( 𝐵𝐶 ) ↔ 𝐴 ⊆ ( 𝐶𝐵 ) )
10 ssundif ( 𝐴 ⊆ ( 𝐶𝐵 ) ↔ ( 𝐴𝐶 ) ⊆ 𝐵 )
11 9 10 bitri ( 𝐴 ⊆ ( 𝐵𝐶 ) ↔ ( 𝐴𝐶 ) ⊆ 𝐵 )
12 difexg ( 𝐴 ∈ V → ( 𝐴𝐶 ) ∈ V )
13 elpwg ( ( 𝐴𝐶 ) ∈ V → ( ( 𝐴𝐶 ) ∈ 𝒫 𝐵 ↔ ( 𝐴𝐶 ) ⊆ 𝐵 ) )
14 12 13 syl ( 𝐴 ∈ V → ( ( 𝐴𝐶 ) ∈ 𝒫 𝐵 ↔ ( 𝐴𝐶 ) ⊆ 𝐵 ) )
15 11 14 bitr4id ( 𝐴 ∈ V → ( 𝐴 ⊆ ( 𝐵𝐶 ) ↔ ( 𝐴𝐶 ) ∈ 𝒫 𝐵 ) )
16 7 15 bitrd ( 𝐴 ∈ V → ( 𝐴 ∈ 𝒫 ( 𝐵𝐶 ) ↔ ( 𝐴𝐶 ) ∈ 𝒫 𝐵 ) )
17 2 6 16 pm5.21nii ( 𝐴 ∈ 𝒫 ( 𝐵𝐶 ) ↔ ( 𝐴𝐶 ) ∈ 𝒫 𝐵 )