| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eldif | 
							⊢ ( 𝐴  ∈  ( 𝒫  ( 𝐵  ∪  { 𝐶 } )  ∖  𝒫  𝐵 )  ↔  ( 𝐴  ∈  𝒫  ( 𝐵  ∪  { 𝐶 } )  ∧  ¬  𝐴  ∈  𝒫  𝐵 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							elpwg | 
							⊢ ( 𝐴  ∈  𝒫  ( 𝐵  ∪  { 𝐶 } )  →  ( 𝐴  ∈  𝒫  𝐵  ↔  𝐴  ⊆  𝐵 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							dfss3 | 
							⊢ ( 𝐴  ⊆  𝐵  ↔  ∀ 𝑥  ∈  𝐴 𝑥  ∈  𝐵 )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							bitrdi | 
							⊢ ( 𝐴  ∈  𝒫  ( 𝐵  ∪  { 𝐶 } )  →  ( 𝐴  ∈  𝒫  𝐵  ↔  ∀ 𝑥  ∈  𝐴 𝑥  ∈  𝐵 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							notbid | 
							⊢ ( 𝐴  ∈  𝒫  ( 𝐵  ∪  { 𝐶 } )  →  ( ¬  𝐴  ∈  𝒫  𝐵  ↔  ¬  ∀ 𝑥  ∈  𝐴 𝑥  ∈  𝐵 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							biimpa | 
							⊢ ( ( 𝐴  ∈  𝒫  ( 𝐵  ∪  { 𝐶 } )  ∧  ¬  𝐴  ∈  𝒫  𝐵 )  →  ¬  ∀ 𝑥  ∈  𝐴 𝑥  ∈  𝐵 )  | 
						
						
							| 7 | 
							
								
							 | 
							rexnal | 
							⊢ ( ∃ 𝑥  ∈  𝐴 ¬  𝑥  ∈  𝐵  ↔  ¬  ∀ 𝑥  ∈  𝐴 𝑥  ∈  𝐵 )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							sylibr | 
							⊢ ( ( 𝐴  ∈  𝒫  ( 𝐵  ∪  { 𝐶 } )  ∧  ¬  𝐴  ∈  𝒫  𝐵 )  →  ∃ 𝑥  ∈  𝐴 ¬  𝑥  ∈  𝐵 )  | 
						
						
							| 9 | 
							
								
							 | 
							elpwi | 
							⊢ ( 𝐴  ∈  𝒫  ( 𝐵  ∪  { 𝐶 } )  →  𝐴  ⊆  ( 𝐵  ∪  { 𝐶 } ) )  | 
						
						
							| 10 | 
							
								
							 | 
							ssel | 
							⊢ ( 𝐴  ⊆  ( 𝐵  ∪  { 𝐶 } )  →  ( 𝑥  ∈  𝐴  →  𝑥  ∈  ( 𝐵  ∪  { 𝐶 } ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							elun | 
							⊢ ( 𝑥  ∈  ( 𝐵  ∪  { 𝐶 } )  ↔  ( 𝑥  ∈  𝐵  ∨  𝑥  ∈  { 𝐶 } ) )  | 
						
						
							| 12 | 
							
								
							 | 
							elsni | 
							⊢ ( 𝑥  ∈  { 𝐶 }  →  𝑥  =  𝐶 )  | 
						
						
							| 13 | 
							
								12
							 | 
							orim2i | 
							⊢ ( ( 𝑥  ∈  𝐵  ∨  𝑥  ∈  { 𝐶 } )  →  ( 𝑥  ∈  𝐵  ∨  𝑥  =  𝐶 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							ord | 
							⊢ ( ( 𝑥  ∈  𝐵  ∨  𝑥  ∈  { 𝐶 } )  →  ( ¬  𝑥  ∈  𝐵  →  𝑥  =  𝐶 ) )  | 
						
						
							| 15 | 
							
								11 14
							 | 
							sylbi | 
							⊢ ( 𝑥  ∈  ( 𝐵  ∪  { 𝐶 } )  →  ( ¬  𝑥  ∈  𝐵  →  𝑥  =  𝐶 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							imim2i | 
							⊢ ( ( 𝑥  ∈  𝐴  →  𝑥  ∈  ( 𝐵  ∪  { 𝐶 } ) )  →  ( 𝑥  ∈  𝐴  →  ( ¬  𝑥  ∈  𝐵  →  𝑥  =  𝐶 ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							impd | 
							⊢ ( ( 𝑥  ∈  𝐴  →  𝑥  ∈  ( 𝐵  ∪  { 𝐶 } ) )  →  ( ( 𝑥  ∈  𝐴  ∧  ¬  𝑥  ∈  𝐵 )  →  𝑥  =  𝐶 ) )  | 
						
						
							| 18 | 
							
								9 10 17
							 | 
							3syl | 
							⊢ ( 𝐴  ∈  𝒫  ( 𝐵  ∪  { 𝐶 } )  →  ( ( 𝑥  ∈  𝐴  ∧  ¬  𝑥  ∈  𝐵 )  →  𝑥  =  𝐶 ) )  | 
						
						
							| 19 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑥  =  𝐶  →  ( 𝑥  ∈  𝐴  ↔  𝐶  ∈  𝐴 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							biimpd | 
							⊢ ( 𝑥  =  𝐶  →  ( 𝑥  ∈  𝐴  →  𝐶  ∈  𝐴 ) )  | 
						
						
							| 21 | 
							
								18 20
							 | 
							syl6 | 
							⊢ ( 𝐴  ∈  𝒫  ( 𝐵  ∪  { 𝐶 } )  →  ( ( 𝑥  ∈  𝐴  ∧  ¬  𝑥  ∈  𝐵 )  →  ( 𝑥  ∈  𝐴  →  𝐶  ∈  𝐴 ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							expd | 
							⊢ ( 𝐴  ∈  𝒫  ( 𝐵  ∪  { 𝐶 } )  →  ( 𝑥  ∈  𝐴  →  ( ¬  𝑥  ∈  𝐵  →  ( 𝑥  ∈  𝐴  →  𝐶  ∈  𝐴 ) ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							com4r | 
							⊢ ( 𝑥  ∈  𝐴  →  ( 𝐴  ∈  𝒫  ( 𝐵  ∪  { 𝐶 } )  →  ( 𝑥  ∈  𝐴  →  ( ¬  𝑥  ∈  𝐵  →  𝐶  ∈  𝐴 ) ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							pm2.43b | 
							⊢ ( 𝐴  ∈  𝒫  ( 𝐵  ∪  { 𝐶 } )  →  ( 𝑥  ∈  𝐴  →  ( ¬  𝑥  ∈  𝐵  →  𝐶  ∈  𝐴 ) ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							rexlimdv | 
							⊢ ( 𝐴  ∈  𝒫  ( 𝐵  ∪  { 𝐶 } )  →  ( ∃ 𝑥  ∈  𝐴 ¬  𝑥  ∈  𝐵  →  𝐶  ∈  𝐴 ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							imp | 
							⊢ ( ( 𝐴  ∈  𝒫  ( 𝐵  ∪  { 𝐶 } )  ∧  ∃ 𝑥  ∈  𝐴 ¬  𝑥  ∈  𝐵 )  →  𝐶  ∈  𝐴 )  | 
						
						
							| 27 | 
							
								8 26
							 | 
							syldan | 
							⊢ ( ( 𝐴  ∈  𝒫  ( 𝐵  ∪  { 𝐶 } )  ∧  ¬  𝐴  ∈  𝒫  𝐵 )  →  𝐶  ∈  𝐴 )  | 
						
						
							| 28 | 
							
								1 27
							 | 
							sylbi | 
							⊢ ( 𝐴  ∈  ( 𝒫  ( 𝐵  ∪  { 𝐶 } )  ∖  𝒫  𝐵 )  →  𝐶  ∈  𝐴 )  |