Step |
Hyp |
Ref |
Expression |
1 |
|
eldif |
⊢ ( 𝐴 ∈ ( 𝒫 ( 𝐵 ∪ { 𝐶 } ) ∖ 𝒫 𝐵 ) ↔ ( 𝐴 ∈ 𝒫 ( 𝐵 ∪ { 𝐶 } ) ∧ ¬ 𝐴 ∈ 𝒫 𝐵 ) ) |
2 |
|
elpwg |
⊢ ( 𝐴 ∈ 𝒫 ( 𝐵 ∪ { 𝐶 } ) → ( 𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵 ) ) |
3 |
|
dfss3 |
⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ) |
4 |
2 3
|
bitrdi |
⊢ ( 𝐴 ∈ 𝒫 ( 𝐵 ∪ { 𝐶 } ) → ( 𝐴 ∈ 𝒫 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ) ) |
5 |
4
|
notbid |
⊢ ( 𝐴 ∈ 𝒫 ( 𝐵 ∪ { 𝐶 } ) → ( ¬ 𝐴 ∈ 𝒫 𝐵 ↔ ¬ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ) ) |
6 |
5
|
biimpa |
⊢ ( ( 𝐴 ∈ 𝒫 ( 𝐵 ∪ { 𝐶 } ) ∧ ¬ 𝐴 ∈ 𝒫 𝐵 ) → ¬ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ) |
7 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ↔ ¬ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ) |
8 |
6 7
|
sylibr |
⊢ ( ( 𝐴 ∈ 𝒫 ( 𝐵 ∪ { 𝐶 } ) ∧ ¬ 𝐴 ∈ 𝒫 𝐵 ) → ∃ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) |
9 |
|
elpwi |
⊢ ( 𝐴 ∈ 𝒫 ( 𝐵 ∪ { 𝐶 } ) → 𝐴 ⊆ ( 𝐵 ∪ { 𝐶 } ) ) |
10 |
|
ssel |
⊢ ( 𝐴 ⊆ ( 𝐵 ∪ { 𝐶 } ) → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐵 ∪ { 𝐶 } ) ) ) |
11 |
|
elun |
⊢ ( 𝑥 ∈ ( 𝐵 ∪ { 𝐶 } ) ↔ ( 𝑥 ∈ 𝐵 ∨ 𝑥 ∈ { 𝐶 } ) ) |
12 |
|
elsni |
⊢ ( 𝑥 ∈ { 𝐶 } → 𝑥 = 𝐶 ) |
13 |
12
|
orim2i |
⊢ ( ( 𝑥 ∈ 𝐵 ∨ 𝑥 ∈ { 𝐶 } ) → ( 𝑥 ∈ 𝐵 ∨ 𝑥 = 𝐶 ) ) |
14 |
13
|
ord |
⊢ ( ( 𝑥 ∈ 𝐵 ∨ 𝑥 ∈ { 𝐶 } ) → ( ¬ 𝑥 ∈ 𝐵 → 𝑥 = 𝐶 ) ) |
15 |
11 14
|
sylbi |
⊢ ( 𝑥 ∈ ( 𝐵 ∪ { 𝐶 } ) → ( ¬ 𝑥 ∈ 𝐵 → 𝑥 = 𝐶 ) ) |
16 |
15
|
imim2i |
⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐵 ∪ { 𝐶 } ) ) → ( 𝑥 ∈ 𝐴 → ( ¬ 𝑥 ∈ 𝐵 → 𝑥 = 𝐶 ) ) ) |
17 |
16
|
impd |
⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐵 ∪ { 𝐶 } ) ) → ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) → 𝑥 = 𝐶 ) ) |
18 |
9 10 17
|
3syl |
⊢ ( 𝐴 ∈ 𝒫 ( 𝐵 ∪ { 𝐶 } ) → ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) → 𝑥 = 𝐶 ) ) |
19 |
|
eleq1 |
⊢ ( 𝑥 = 𝐶 → ( 𝑥 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴 ) ) |
20 |
19
|
biimpd |
⊢ ( 𝑥 = 𝐶 → ( 𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐴 ) ) |
21 |
18 20
|
syl6 |
⊢ ( 𝐴 ∈ 𝒫 ( 𝐵 ∪ { 𝐶 } ) → ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐴 ) ) ) |
22 |
21
|
expd |
⊢ ( 𝐴 ∈ 𝒫 ( 𝐵 ∪ { 𝐶 } ) → ( 𝑥 ∈ 𝐴 → ( ¬ 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐴 ) ) ) ) |
23 |
22
|
com4r |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝐴 ∈ 𝒫 ( 𝐵 ∪ { 𝐶 } ) → ( 𝑥 ∈ 𝐴 → ( ¬ 𝑥 ∈ 𝐵 → 𝐶 ∈ 𝐴 ) ) ) ) |
24 |
23
|
pm2.43b |
⊢ ( 𝐴 ∈ 𝒫 ( 𝐵 ∪ { 𝐶 } ) → ( 𝑥 ∈ 𝐴 → ( ¬ 𝑥 ∈ 𝐵 → 𝐶 ∈ 𝐴 ) ) ) |
25 |
24
|
rexlimdv |
⊢ ( 𝐴 ∈ 𝒫 ( 𝐵 ∪ { 𝐶 } ) → ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 → 𝐶 ∈ 𝐴 ) ) |
26 |
25
|
imp |
⊢ ( ( 𝐴 ∈ 𝒫 ( 𝐵 ∪ { 𝐶 } ) ∧ ∃ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ 𝐴 ) |
27 |
8 26
|
syldan |
⊢ ( ( 𝐴 ∈ 𝒫 ( 𝐵 ∪ { 𝐶 } ) ∧ ¬ 𝐴 ∈ 𝒫 𝐵 ) → 𝐶 ∈ 𝐴 ) |
28 |
1 27
|
sylbi |
⊢ ( 𝐴 ∈ ( 𝒫 ( 𝐵 ∪ { 𝐶 } ) ∖ 𝒫 𝐵 ) → 𝐶 ∈ 𝐴 ) |