Step |
Hyp |
Ref |
Expression |
1 |
|
elaa |
⊢ ( 𝐴 ∈ 𝔸 ↔ ( 𝐴 ∈ ℂ ∧ ∃ 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑓 ‘ 𝐴 ) = 0 ) ) |
2 |
|
zssq |
⊢ ℤ ⊆ ℚ |
3 |
|
qsscn |
⊢ ℚ ⊆ ℂ |
4 |
|
plyss |
⊢ ( ( ℤ ⊆ ℚ ∧ ℚ ⊆ ℂ ) → ( Poly ‘ ℤ ) ⊆ ( Poly ‘ ℚ ) ) |
5 |
2 3 4
|
mp2an |
⊢ ( Poly ‘ ℤ ) ⊆ ( Poly ‘ ℚ ) |
6 |
|
ssdif |
⊢ ( ( Poly ‘ ℤ ) ⊆ ( Poly ‘ ℚ ) → ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ⊆ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ) |
7 |
|
ssrexv |
⊢ ( ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ⊆ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) → ( ∃ 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑓 ‘ 𝐴 ) = 0 → ∃ 𝑓 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ( 𝑓 ‘ 𝐴 ) = 0 ) ) |
8 |
5 6 7
|
mp2b |
⊢ ( ∃ 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑓 ‘ 𝐴 ) = 0 → ∃ 𝑓 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ( 𝑓 ‘ 𝐴 ) = 0 ) |
9 |
8
|
anim2i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ∃ 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑓 ‘ 𝐴 ) = 0 ) → ( 𝐴 ∈ ℂ ∧ ∃ 𝑓 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ( 𝑓 ‘ 𝐴 ) = 0 ) ) |
10 |
1 9
|
sylbi |
⊢ ( 𝐴 ∈ 𝔸 → ( 𝐴 ∈ ℂ ∧ ∃ 𝑓 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ( 𝑓 ‘ 𝐴 ) = 0 ) ) |
11 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑓 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ) ∧ ( 𝑓 ‘ 𝐴 ) = 0 ) → 𝐴 ∈ ℂ ) |
12 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑓 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ) ∧ ( 𝑓 ‘ 𝐴 ) = 0 ) → 𝑓 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ) |
13 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑓 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ) ∧ ( 𝑓 ‘ 𝐴 ) = 0 ) → ( 𝑓 ‘ 𝐴 ) = 0 ) |
14 |
|
eqid |
⊢ ( coeff ‘ 𝑓 ) = ( coeff ‘ 𝑓 ) |
15 |
|
fveq2 |
⊢ ( 𝑚 = 𝑘 → ( ( coeff ‘ 𝑓 ) ‘ 𝑚 ) = ( ( coeff ‘ 𝑓 ) ‘ 𝑘 ) ) |
16 |
15
|
oveq1d |
⊢ ( 𝑚 = 𝑘 → ( ( ( coeff ‘ 𝑓 ) ‘ 𝑚 ) · 𝑗 ) = ( ( ( coeff ‘ 𝑓 ) ‘ 𝑘 ) · 𝑗 ) ) |
17 |
16
|
eleq1d |
⊢ ( 𝑚 = 𝑘 → ( ( ( ( coeff ‘ 𝑓 ) ‘ 𝑚 ) · 𝑗 ) ∈ ℤ ↔ ( ( ( coeff ‘ 𝑓 ) ‘ 𝑘 ) · 𝑗 ) ∈ ℤ ) ) |
18 |
17
|
rabbidv |
⊢ ( 𝑚 = 𝑘 → { 𝑗 ∈ ℕ ∣ ( ( ( coeff ‘ 𝑓 ) ‘ 𝑚 ) · 𝑗 ) ∈ ℤ } = { 𝑗 ∈ ℕ ∣ ( ( ( coeff ‘ 𝑓 ) ‘ 𝑘 ) · 𝑗 ) ∈ ℤ } ) |
19 |
|
oveq2 |
⊢ ( 𝑗 = 𝑛 → ( ( ( coeff ‘ 𝑓 ) ‘ 𝑘 ) · 𝑗 ) = ( ( ( coeff ‘ 𝑓 ) ‘ 𝑘 ) · 𝑛 ) ) |
20 |
19
|
eleq1d |
⊢ ( 𝑗 = 𝑛 → ( ( ( ( coeff ‘ 𝑓 ) ‘ 𝑘 ) · 𝑗 ) ∈ ℤ ↔ ( ( ( coeff ‘ 𝑓 ) ‘ 𝑘 ) · 𝑛 ) ∈ ℤ ) ) |
21 |
20
|
cbvrabv |
⊢ { 𝑗 ∈ ℕ ∣ ( ( ( coeff ‘ 𝑓 ) ‘ 𝑘 ) · 𝑗 ) ∈ ℤ } = { 𝑛 ∈ ℕ ∣ ( ( ( coeff ‘ 𝑓 ) ‘ 𝑘 ) · 𝑛 ) ∈ ℤ } |
22 |
18 21
|
eqtrdi |
⊢ ( 𝑚 = 𝑘 → { 𝑗 ∈ ℕ ∣ ( ( ( coeff ‘ 𝑓 ) ‘ 𝑚 ) · 𝑗 ) ∈ ℤ } = { 𝑛 ∈ ℕ ∣ ( ( ( coeff ‘ 𝑓 ) ‘ 𝑘 ) · 𝑛 ) ∈ ℤ } ) |
23 |
22
|
infeq1d |
⊢ ( 𝑚 = 𝑘 → inf ( { 𝑗 ∈ ℕ ∣ ( ( ( coeff ‘ 𝑓 ) ‘ 𝑚 ) · 𝑗 ) ∈ ℤ } , ℝ , < ) = inf ( { 𝑛 ∈ ℕ ∣ ( ( ( coeff ‘ 𝑓 ) ‘ 𝑘 ) · 𝑛 ) ∈ ℤ } , ℝ , < ) ) |
24 |
23
|
cbvmptv |
⊢ ( 𝑚 ∈ ℕ0 ↦ inf ( { 𝑗 ∈ ℕ ∣ ( ( ( coeff ‘ 𝑓 ) ‘ 𝑚 ) · 𝑗 ) ∈ ℤ } , ℝ , < ) ) = ( 𝑘 ∈ ℕ0 ↦ inf ( { 𝑛 ∈ ℕ ∣ ( ( ( coeff ‘ 𝑓 ) ‘ 𝑘 ) · 𝑛 ) ∈ ℤ } , ℝ , < ) ) |
25 |
|
eqid |
⊢ ( seq 0 ( · , ( 𝑚 ∈ ℕ0 ↦ inf ( { 𝑗 ∈ ℕ ∣ ( ( ( coeff ‘ 𝑓 ) ‘ 𝑚 ) · 𝑗 ) ∈ ℤ } , ℝ , < ) ) ) ‘ ( deg ‘ 𝑓 ) ) = ( seq 0 ( · , ( 𝑚 ∈ ℕ0 ↦ inf ( { 𝑗 ∈ ℕ ∣ ( ( ( coeff ‘ 𝑓 ) ‘ 𝑚 ) · 𝑗 ) ∈ ℤ } , ℝ , < ) ) ) ‘ ( deg ‘ 𝑓 ) ) |
26 |
11 12 13 14 24 25
|
elqaalem3 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑓 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ) ∧ ( 𝑓 ‘ 𝐴 ) = 0 ) → 𝐴 ∈ 𝔸 ) |
27 |
26
|
r19.29an |
⊢ ( ( 𝐴 ∈ ℂ ∧ ∃ 𝑓 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ( 𝑓 ‘ 𝐴 ) = 0 ) → 𝐴 ∈ 𝔸 ) |
28 |
10 27
|
impbii |
⊢ ( 𝐴 ∈ 𝔸 ↔ ( 𝐴 ∈ ℂ ∧ ∃ 𝑓 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ( 𝑓 ‘ 𝐴 ) = 0 ) ) |