| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elqaa.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | elqaa.2 | ⊢ ( 𝜑  →  𝐹  ∈  ( ( Poly ‘ ℚ )  ∖  { 0𝑝 } ) ) | 
						
							| 3 |  | elqaa.3 | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐴 )  =  0 ) | 
						
							| 4 |  | elqaa.4 | ⊢ 𝐵  =  ( coeff ‘ 𝐹 ) | 
						
							| 5 |  | elqaa.5 | ⊢ 𝑁  =  ( 𝑘  ∈  ℕ0  ↦  inf ( { 𝑛  ∈  ℕ  ∣  ( ( 𝐵 ‘ 𝑘 )  ·  𝑛 )  ∈  ℤ } ,  ℝ ,   <  ) ) | 
						
							| 6 |  | elqaa.6 | ⊢ 𝑅  =  ( seq 0 (  ·  ,  𝑁 ) ‘ ( deg ‘ 𝐹 ) ) | 
						
							| 7 |  | elqaa.7 | ⊢ 𝑃  =  ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( ( 𝑥  ·  𝑦 )  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 8 |  | elfznn0 | ⊢ ( 𝐾  ∈  ( 0 ... ( deg ‘ 𝐹 ) )  →  𝐾  ∈  ℕ0 ) | 
						
							| 9 | 6 | fveq2i | ⊢ ( ( 𝑘  ∈  ℕ  ↦  ( 𝑘  mod  ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑅 )  =  ( ( 𝑘  ∈  ℕ  ↦  ( 𝑘  mod  ( 𝑁 ‘ 𝐾 ) ) ) ‘ ( seq 0 (  ·  ,  𝑁 ) ‘ ( deg ‘ 𝐹 ) ) ) | 
						
							| 10 |  | nnmulcl | ⊢ ( ( 𝑖  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  ( 𝑖  ·  𝑗 )  ∈  ℕ ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  ℕ  ∧  𝑗  ∈  ℕ ) )  →  ( 𝑖  ·  𝑗 )  ∈  ℕ ) | 
						
							| 12 |  | elfznn0 | ⊢ ( 𝑖  ∈  ( 0 ... ( deg ‘ 𝐹 ) )  →  𝑖  ∈  ℕ0 ) | 
						
							| 13 | 1 2 3 4 5 6 | elqaalem1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑁 ‘ 𝑖 )  ∈  ℕ  ∧  ( ( 𝐵 ‘ 𝑖 )  ·  ( 𝑁 ‘ 𝑖 ) )  ∈  ℤ ) ) | 
						
							| 14 | 13 | simpld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑁 ‘ 𝑖 )  ∈  ℕ ) | 
						
							| 15 | 14 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑁 ‘ 𝑖 )  ∈  ℕ ) | 
						
							| 16 | 12 15 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( 𝑁 ‘ 𝑖 )  ∈  ℕ ) | 
						
							| 17 |  | eldifi | ⊢ ( 𝐹  ∈  ( ( Poly ‘ ℚ )  ∖  { 0𝑝 } )  →  𝐹  ∈  ( Poly ‘ ℚ ) ) | 
						
							| 18 |  | dgrcl | ⊢ ( 𝐹  ∈  ( Poly ‘ ℚ )  →  ( deg ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 19 | 2 17 18 | 3syl | ⊢ ( 𝜑  →  ( deg ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 20 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 21 | 19 20 | eleqtrdi | ⊢ ( 𝜑  →  ( deg ‘ 𝐹 )  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ℕ0 )  →  ( deg ‘ 𝐹 )  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 23 |  | nnz | ⊢ ( 𝑖  ∈  ℕ  →  𝑖  ∈  ℤ ) | 
						
							| 24 | 23 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  ℕ  ∧  𝑗  ∈  ℕ ) )  →  𝑖  ∈  ℤ ) | 
						
							| 25 | 1 2 3 4 5 6 | elqaalem1 | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ℕ0 )  →  ( ( 𝑁 ‘ 𝐾 )  ∈  ℕ  ∧  ( ( 𝐵 ‘ 𝐾 )  ·  ( 𝑁 ‘ 𝐾 ) )  ∈  ℤ ) ) | 
						
							| 26 | 25 | simpld | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑁 ‘ 𝐾 )  ∈  ℕ ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  ℕ  ∧  𝑗  ∈  ℕ ) )  →  ( 𝑁 ‘ 𝐾 )  ∈  ℕ ) | 
						
							| 28 | 24 27 | zmodcld | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  ℕ  ∧  𝑗  ∈  ℕ ) )  →  ( 𝑖  mod  ( 𝑁 ‘ 𝐾 ) )  ∈  ℕ0 ) | 
						
							| 29 | 28 | nn0zd | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  ℕ  ∧  𝑗  ∈  ℕ ) )  →  ( 𝑖  mod  ( 𝑁 ‘ 𝐾 ) )  ∈  ℤ ) | 
						
							| 30 |  | nnz | ⊢ ( 𝑗  ∈  ℕ  →  𝑗  ∈  ℤ ) | 
						
							| 31 | 30 | ad2antll | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  ℕ  ∧  𝑗  ∈  ℕ ) )  →  𝑗  ∈  ℤ ) | 
						
							| 32 | 31 27 | zmodcld | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  ℕ  ∧  𝑗  ∈  ℕ ) )  →  ( 𝑗  mod  ( 𝑁 ‘ 𝐾 ) )  ∈  ℕ0 ) | 
						
							| 33 | 32 | nn0zd | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  ℕ  ∧  𝑗  ∈  ℕ ) )  →  ( 𝑗  mod  ( 𝑁 ‘ 𝐾 ) )  ∈  ℤ ) | 
						
							| 34 | 27 | nnrpd | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  ℕ  ∧  𝑗  ∈  ℕ ) )  →  ( 𝑁 ‘ 𝐾 )  ∈  ℝ+ ) | 
						
							| 35 |  | nnre | ⊢ ( 𝑖  ∈  ℕ  →  𝑖  ∈  ℝ ) | 
						
							| 36 | 35 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  ℕ  ∧  𝑗  ∈  ℕ ) )  →  𝑖  ∈  ℝ ) | 
						
							| 37 |  | modabs2 | ⊢ ( ( 𝑖  ∈  ℝ  ∧  ( 𝑁 ‘ 𝐾 )  ∈  ℝ+ )  →  ( ( 𝑖  mod  ( 𝑁 ‘ 𝐾 ) )  mod  ( 𝑁 ‘ 𝐾 ) )  =  ( 𝑖  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 38 | 36 34 37 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  ℕ  ∧  𝑗  ∈  ℕ ) )  →  ( ( 𝑖  mod  ( 𝑁 ‘ 𝐾 ) )  mod  ( 𝑁 ‘ 𝐾 ) )  =  ( 𝑖  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 39 |  | nnre | ⊢ ( 𝑗  ∈  ℕ  →  𝑗  ∈  ℝ ) | 
						
							| 40 | 39 | ad2antll | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  ℕ  ∧  𝑗  ∈  ℕ ) )  →  𝑗  ∈  ℝ ) | 
						
							| 41 |  | modabs2 | ⊢ ( ( 𝑗  ∈  ℝ  ∧  ( 𝑁 ‘ 𝐾 )  ∈  ℝ+ )  →  ( ( 𝑗  mod  ( 𝑁 ‘ 𝐾 ) )  mod  ( 𝑁 ‘ 𝐾 ) )  =  ( 𝑗  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 42 | 40 34 41 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  ℕ  ∧  𝑗  ∈  ℕ ) )  →  ( ( 𝑗  mod  ( 𝑁 ‘ 𝐾 ) )  mod  ( 𝑁 ‘ 𝐾 ) )  =  ( 𝑗  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 43 | 29 24 33 31 34 38 42 | modmul12d | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  ℕ  ∧  𝑗  ∈  ℕ ) )  →  ( ( ( 𝑖  mod  ( 𝑁 ‘ 𝐾 ) )  ·  ( 𝑗  mod  ( 𝑁 ‘ 𝐾 ) ) )  mod  ( 𝑁 ‘ 𝐾 ) )  =  ( ( 𝑖  ·  𝑗 )  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 44 |  | oveq1 | ⊢ ( 𝑘  =  𝑖  →  ( 𝑘  mod  ( 𝑁 ‘ 𝐾 ) )  =  ( 𝑖  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 45 |  | eqid | ⊢ ( 𝑘  ∈  ℕ  ↦  ( 𝑘  mod  ( 𝑁 ‘ 𝐾 ) ) )  =  ( 𝑘  ∈  ℕ  ↦  ( 𝑘  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 46 |  | ovex | ⊢ ( 𝑖  mod  ( 𝑁 ‘ 𝐾 ) )  ∈  V | 
						
							| 47 | 44 45 46 | fvmpt | ⊢ ( 𝑖  ∈  ℕ  →  ( ( 𝑘  ∈  ℕ  ↦  ( 𝑘  mod  ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑖 )  =  ( 𝑖  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 48 | 47 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  ℕ  ∧  𝑗  ∈  ℕ ) )  →  ( ( 𝑘  ∈  ℕ  ↦  ( 𝑘  mod  ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑖 )  =  ( 𝑖  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 49 |  | oveq1 | ⊢ ( 𝑘  =  𝑗  →  ( 𝑘  mod  ( 𝑁 ‘ 𝐾 ) )  =  ( 𝑗  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 50 |  | ovex | ⊢ ( 𝑗  mod  ( 𝑁 ‘ 𝐾 ) )  ∈  V | 
						
							| 51 | 49 45 50 | fvmpt | ⊢ ( 𝑗  ∈  ℕ  →  ( ( 𝑘  ∈  ℕ  ↦  ( 𝑘  mod  ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑗 )  =  ( 𝑗  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 52 | 51 | ad2antll | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  ℕ  ∧  𝑗  ∈  ℕ ) )  →  ( ( 𝑘  ∈  ℕ  ↦  ( 𝑘  mod  ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑗 )  =  ( 𝑗  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 53 | 48 52 | oveq12d | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  ℕ  ∧  𝑗  ∈  ℕ ) )  →  ( ( ( 𝑘  ∈  ℕ  ↦  ( 𝑘  mod  ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑖 ) 𝑃 ( ( 𝑘  ∈  ℕ  ↦  ( 𝑘  mod  ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑗 ) )  =  ( ( 𝑖  mod  ( 𝑁 ‘ 𝐾 ) ) 𝑃 ( 𝑗  mod  ( 𝑁 ‘ 𝐾 ) ) ) ) | 
						
							| 54 |  | oveq12 | ⊢ ( ( 𝑥  =  ( 𝑖  mod  ( 𝑁 ‘ 𝐾 ) )  ∧  𝑦  =  ( 𝑗  mod  ( 𝑁 ‘ 𝐾 ) ) )  →  ( 𝑥  ·  𝑦 )  =  ( ( 𝑖  mod  ( 𝑁 ‘ 𝐾 ) )  ·  ( 𝑗  mod  ( 𝑁 ‘ 𝐾 ) ) ) ) | 
						
							| 55 | 54 | oveq1d | ⊢ ( ( 𝑥  =  ( 𝑖  mod  ( 𝑁 ‘ 𝐾 ) )  ∧  𝑦  =  ( 𝑗  mod  ( 𝑁 ‘ 𝐾 ) ) )  →  ( ( 𝑥  ·  𝑦 )  mod  ( 𝑁 ‘ 𝐾 ) )  =  ( ( ( 𝑖  mod  ( 𝑁 ‘ 𝐾 ) )  ·  ( 𝑗  mod  ( 𝑁 ‘ 𝐾 ) ) )  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 56 |  | ovex | ⊢ ( ( ( 𝑖  mod  ( 𝑁 ‘ 𝐾 ) )  ·  ( 𝑗  mod  ( 𝑁 ‘ 𝐾 ) ) )  mod  ( 𝑁 ‘ 𝐾 ) )  ∈  V | 
						
							| 57 | 55 7 56 | ovmpoa | ⊢ ( ( ( 𝑖  mod  ( 𝑁 ‘ 𝐾 ) )  ∈  V  ∧  ( 𝑗  mod  ( 𝑁 ‘ 𝐾 ) )  ∈  V )  →  ( ( 𝑖  mod  ( 𝑁 ‘ 𝐾 ) ) 𝑃 ( 𝑗  mod  ( 𝑁 ‘ 𝐾 ) ) )  =  ( ( ( 𝑖  mod  ( 𝑁 ‘ 𝐾 ) )  ·  ( 𝑗  mod  ( 𝑁 ‘ 𝐾 ) ) )  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 58 | 46 50 57 | mp2an | ⊢ ( ( 𝑖  mod  ( 𝑁 ‘ 𝐾 ) ) 𝑃 ( 𝑗  mod  ( 𝑁 ‘ 𝐾 ) ) )  =  ( ( ( 𝑖  mod  ( 𝑁 ‘ 𝐾 ) )  ·  ( 𝑗  mod  ( 𝑁 ‘ 𝐾 ) ) )  mod  ( 𝑁 ‘ 𝐾 ) ) | 
						
							| 59 | 53 58 | eqtrdi | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  ℕ  ∧  𝑗  ∈  ℕ ) )  →  ( ( ( 𝑘  ∈  ℕ  ↦  ( 𝑘  mod  ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑖 ) 𝑃 ( ( 𝑘  ∈  ℕ  ↦  ( 𝑘  mod  ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑗 ) )  =  ( ( ( 𝑖  mod  ( 𝑁 ‘ 𝐾 ) )  ·  ( 𝑗  mod  ( 𝑁 ‘ 𝐾 ) ) )  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 60 |  | oveq1 | ⊢ ( 𝑘  =  ( 𝑖  ·  𝑗 )  →  ( 𝑘  mod  ( 𝑁 ‘ 𝐾 ) )  =  ( ( 𝑖  ·  𝑗 )  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 61 |  | ovex | ⊢ ( ( 𝑖  ·  𝑗 )  mod  ( 𝑁 ‘ 𝐾 ) )  ∈  V | 
						
							| 62 | 60 45 61 | fvmpt | ⊢ ( ( 𝑖  ·  𝑗 )  ∈  ℕ  →  ( ( 𝑘  ∈  ℕ  ↦  ( 𝑘  mod  ( 𝑁 ‘ 𝐾 ) ) ) ‘ ( 𝑖  ·  𝑗 ) )  =  ( ( 𝑖  ·  𝑗 )  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 63 | 11 62 | syl | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  ℕ  ∧  𝑗  ∈  ℕ ) )  →  ( ( 𝑘  ∈  ℕ  ↦  ( 𝑘  mod  ( 𝑁 ‘ 𝐾 ) ) ) ‘ ( 𝑖  ·  𝑗 ) )  =  ( ( 𝑖  ·  𝑗 )  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 64 | 43 59 63 | 3eqtr4rd | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑖  ∈  ℕ  ∧  𝑗  ∈  ℕ ) )  →  ( ( 𝑘  ∈  ℕ  ↦  ( 𝑘  mod  ( 𝑁 ‘ 𝐾 ) ) ) ‘ ( 𝑖  ·  𝑗 ) )  =  ( ( ( 𝑘  ∈  ℕ  ↦  ( 𝑘  mod  ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑖 ) 𝑃 ( ( 𝑘  ∈  ℕ  ↦  ( 𝑘  mod  ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑗 ) ) ) | 
						
							| 65 |  | oveq1 | ⊢ ( 𝑘  =  ( 𝑁 ‘ 𝑖 )  →  ( 𝑘  mod  ( 𝑁 ‘ 𝐾 ) )  =  ( ( 𝑁 ‘ 𝑖 )  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 66 |  | ovex | ⊢ ( ( 𝑁 ‘ 𝑖 )  mod  ( 𝑁 ‘ 𝐾 ) )  ∈  V | 
						
							| 67 | 65 45 66 | fvmpt | ⊢ ( ( 𝑁 ‘ 𝑖 )  ∈  ℕ  →  ( ( 𝑘  ∈  ℕ  ↦  ( 𝑘  mod  ( 𝑁 ‘ 𝐾 ) ) ) ‘ ( 𝑁 ‘ 𝑖 ) )  =  ( ( 𝑁 ‘ 𝑖 )  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 68 | 15 67 | syl | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑘  ∈  ℕ  ↦  ( 𝑘  mod  ( 𝑁 ‘ 𝐾 ) ) ) ‘ ( 𝑁 ‘ 𝑖 ) )  =  ( ( 𝑁 ‘ 𝑖 )  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 69 |  | fveq2 | ⊢ ( 𝑘  =  𝑖  →  ( 𝑁 ‘ 𝑘 )  =  ( 𝑁 ‘ 𝑖 ) ) | 
						
							| 70 | 69 | oveq1d | ⊢ ( 𝑘  =  𝑖  →  ( ( 𝑁 ‘ 𝑘 )  mod  ( 𝑁 ‘ 𝐾 ) )  =  ( ( 𝑁 ‘ 𝑖 )  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 71 |  | eqid | ⊢ ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑁 ‘ 𝑘 )  mod  ( 𝑁 ‘ 𝐾 ) ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑁 ‘ 𝑘 )  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 72 | 70 71 66 | fvmpt | ⊢ ( 𝑖  ∈  ℕ0  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑁 ‘ 𝑘 )  mod  ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑖 )  =  ( ( 𝑁 ‘ 𝑖 )  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 73 | 72 | adantl | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑁 ‘ 𝑘 )  mod  ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑖 )  =  ( ( 𝑁 ‘ 𝑖 )  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 74 | 68 73 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑘  ∈  ℕ  ↦  ( 𝑘  mod  ( 𝑁 ‘ 𝐾 ) ) ) ‘ ( 𝑁 ‘ 𝑖 ) )  =  ( ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑁 ‘ 𝑘 )  mod  ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑖 ) ) | 
						
							| 75 | 12 74 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( ( 𝑘  ∈  ℕ  ↦  ( 𝑘  mod  ( 𝑁 ‘ 𝐾 ) ) ) ‘ ( 𝑁 ‘ 𝑖 ) )  =  ( ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑁 ‘ 𝑘 )  mod  ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑖 ) ) | 
						
							| 76 | 11 16 22 64 75 | seqhomo | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ℕ0 )  →  ( ( 𝑘  ∈  ℕ  ↦  ( 𝑘  mod  ( 𝑁 ‘ 𝐾 ) ) ) ‘ ( seq 0 (  ·  ,  𝑁 ) ‘ ( deg ‘ 𝐹 ) ) )  =  ( seq 0 ( 𝑃 ,  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑁 ‘ 𝑘 )  mod  ( 𝑁 ‘ 𝐾 ) ) ) ) ‘ ( deg ‘ 𝐹 ) ) ) | 
						
							| 77 | 9 76 | eqtrid | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ℕ0 )  →  ( ( 𝑘  ∈  ℕ  ↦  ( 𝑘  mod  ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑅 )  =  ( seq 0 ( 𝑃 ,  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑁 ‘ 𝑘 )  mod  ( 𝑁 ‘ 𝐾 ) ) ) ) ‘ ( deg ‘ 𝐹 ) ) ) | 
						
							| 78 | 8 77 | sylan2 | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( ( 𝑘  ∈  ℕ  ↦  ( 𝑘  mod  ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑅 )  =  ( seq 0 ( 𝑃 ,  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑁 ‘ 𝑘 )  mod  ( 𝑁 ‘ 𝐾 ) ) ) ) ‘ ( deg ‘ 𝐹 ) ) ) | 
						
							| 79 |  | 0zd | ⊢ ( 𝜑  →  0  ∈  ℤ ) | 
						
							| 80 | 10 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ℕ  ∧  𝑗  ∈  ℕ ) )  →  ( 𝑖  ·  𝑗 )  ∈  ℕ ) | 
						
							| 81 | 20 79 14 80 | seqf | ⊢ ( 𝜑  →  seq 0 (  ·  ,  𝑁 ) : ℕ0 ⟶ ℕ ) | 
						
							| 82 | 81 19 | ffvelcdmd | ⊢ ( 𝜑  →  ( seq 0 (  ·  ,  𝑁 ) ‘ ( deg ‘ 𝐹 ) )  ∈  ℕ ) | 
						
							| 83 | 6 82 | eqeltrid | ⊢ ( 𝜑  →  𝑅  ∈  ℕ ) | 
						
							| 84 | 83 | adantr | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ℕ0 )  →  𝑅  ∈  ℕ ) | 
						
							| 85 |  | oveq1 | ⊢ ( 𝑘  =  𝑅  →  ( 𝑘  mod  ( 𝑁 ‘ 𝐾 ) )  =  ( 𝑅  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 86 |  | ovex | ⊢ ( 𝑅  mod  ( 𝑁 ‘ 𝐾 ) )  ∈  V | 
						
							| 87 | 85 45 86 | fvmpt | ⊢ ( 𝑅  ∈  ℕ  →  ( ( 𝑘  ∈  ℕ  ↦  ( 𝑘  mod  ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑅 )  =  ( 𝑅  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 88 | 84 87 | syl | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ℕ0 )  →  ( ( 𝑘  ∈  ℕ  ↦  ( 𝑘  mod  ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑅 )  =  ( 𝑅  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 89 | 8 88 | sylan2 | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( ( 𝑘  ∈  ℕ  ↦  ( 𝑘  mod  ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑅 )  =  ( 𝑅  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 90 |  | oveq12 | ⊢ ( ( 𝑥  =  𝑖  ∧  𝑦  =  𝑗 )  →  ( 𝑥  ·  𝑦 )  =  ( 𝑖  ·  𝑗 ) ) | 
						
							| 91 | 90 | oveq1d | ⊢ ( ( 𝑥  =  𝑖  ∧  𝑦  =  𝑗 )  →  ( ( 𝑥  ·  𝑦 )  mod  ( 𝑁 ‘ 𝐾 ) )  =  ( ( 𝑖  ·  𝑗 )  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 92 | 91 7 61 | ovmpoa | ⊢ ( ( 𝑖  ∈  V  ∧  𝑗  ∈  V )  →  ( 𝑖 𝑃 𝑗 )  =  ( ( 𝑖  ·  𝑗 )  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 93 | 92 | el2v | ⊢ ( 𝑖 𝑃 𝑗 )  =  ( ( 𝑖  ·  𝑗 )  mod  ( 𝑁 ‘ 𝐾 ) ) | 
						
							| 94 |  | nn0mulcl | ⊢ ( ( 𝑖  ∈  ℕ0  ∧  𝑗  ∈  ℕ0 )  →  ( 𝑖  ·  𝑗 )  ∈  ℕ0 ) | 
						
							| 95 | 94 | nn0zd | ⊢ ( ( 𝑖  ∈  ℕ0  ∧  𝑗  ∈  ℕ0 )  →  ( 𝑖  ·  𝑗 )  ∈  ℤ ) | 
						
							| 96 | 8 26 | sylan2 | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( 𝑁 ‘ 𝐾 )  ∈  ℕ ) | 
						
							| 97 |  | zmodcl | ⊢ ( ( ( 𝑖  ·  𝑗 )  ∈  ℤ  ∧  ( 𝑁 ‘ 𝐾 )  ∈  ℕ )  →  ( ( 𝑖  ·  𝑗 )  mod  ( 𝑁 ‘ 𝐾 ) )  ∈  ℕ0 ) | 
						
							| 98 | 95 96 97 | syl2anr | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  ∧  ( 𝑖  ∈  ℕ0  ∧  𝑗  ∈  ℕ0 ) )  →  ( ( 𝑖  ·  𝑗 )  mod  ( 𝑁 ‘ 𝐾 ) )  ∈  ℕ0 ) | 
						
							| 99 | 93 98 | eqeltrid | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  ∧  ( 𝑖  ∈  ℕ0  ∧  𝑗  ∈  ℕ0 ) )  →  ( 𝑖 𝑃 𝑗 )  ∈  ℕ0 ) | 
						
							| 100 |  | fveq2 | ⊢ ( 𝑘  =  𝑚  →  ( 𝐵 ‘ 𝑘 )  =  ( 𝐵 ‘ 𝑚 ) ) | 
						
							| 101 | 100 | oveq1d | ⊢ ( 𝑘  =  𝑚  →  ( ( 𝐵 ‘ 𝑘 )  ·  𝑛 )  =  ( ( 𝐵 ‘ 𝑚 )  ·  𝑛 ) ) | 
						
							| 102 | 101 | eleq1d | ⊢ ( 𝑘  =  𝑚  →  ( ( ( 𝐵 ‘ 𝑘 )  ·  𝑛 )  ∈  ℤ  ↔  ( ( 𝐵 ‘ 𝑚 )  ·  𝑛 )  ∈  ℤ ) ) | 
						
							| 103 | 102 | rabbidv | ⊢ ( 𝑘  =  𝑚  →  { 𝑛  ∈  ℕ  ∣  ( ( 𝐵 ‘ 𝑘 )  ·  𝑛 )  ∈  ℤ }  =  { 𝑛  ∈  ℕ  ∣  ( ( 𝐵 ‘ 𝑚 )  ·  𝑛 )  ∈  ℤ } ) | 
						
							| 104 | 103 | infeq1d | ⊢ ( 𝑘  =  𝑚  →  inf ( { 𝑛  ∈  ℕ  ∣  ( ( 𝐵 ‘ 𝑘 )  ·  𝑛 )  ∈  ℤ } ,  ℝ ,   <  )  =  inf ( { 𝑛  ∈  ℕ  ∣  ( ( 𝐵 ‘ 𝑚 )  ·  𝑛 )  ∈  ℤ } ,  ℝ ,   <  ) ) | 
						
							| 105 | 104 | cbvmptv | ⊢ ( 𝑘  ∈  ℕ0  ↦  inf ( { 𝑛  ∈  ℕ  ∣  ( ( 𝐵 ‘ 𝑘 )  ·  𝑛 )  ∈  ℤ } ,  ℝ ,   <  ) )  =  ( 𝑚  ∈  ℕ0  ↦  inf ( { 𝑛  ∈  ℕ  ∣  ( ( 𝐵 ‘ 𝑚 )  ·  𝑛 )  ∈  ℤ } ,  ℝ ,   <  ) ) | 
						
							| 106 | 5 105 | eqtri | ⊢ 𝑁  =  ( 𝑚  ∈  ℕ0  ↦  inf ( { 𝑛  ∈  ℕ  ∣  ( ( 𝐵 ‘ 𝑚 )  ·  𝑛 )  ∈  ℤ } ,  ℝ ,   <  ) ) | 
						
							| 107 | 1 2 3 4 106 6 | elqaalem1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑁 ‘ 𝑘 )  ∈  ℕ  ∧  ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑁 ‘ 𝑘 ) )  ∈  ℤ ) ) | 
						
							| 108 | 107 | simpld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑁 ‘ 𝑘 )  ∈  ℕ ) | 
						
							| 109 | 108 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ℕ0 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑁 ‘ 𝑘 )  ∈  ℕ ) | 
						
							| 110 | 109 | nnzd | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ℕ0 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑁 ‘ 𝑘 )  ∈  ℤ ) | 
						
							| 111 | 26 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ℕ0 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑁 ‘ 𝐾 )  ∈  ℕ ) | 
						
							| 112 | 110 111 | zmodcld | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ℕ0 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑁 ‘ 𝑘 )  mod  ( 𝑁 ‘ 𝐾 ) )  ∈  ℕ0 ) | 
						
							| 113 | 112 | fmpttd | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑁 ‘ 𝑘 )  mod  ( 𝑁 ‘ 𝐾 ) ) ) : ℕ0 ⟶ ℕ0 ) | 
						
							| 114 | 8 113 | sylan2 | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑁 ‘ 𝑘 )  mod  ( 𝑁 ‘ 𝐾 ) ) ) : ℕ0 ⟶ ℕ0 ) | 
						
							| 115 |  | ffvelcdm | ⊢ ( ( ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑁 ‘ 𝑘 )  mod  ( 𝑁 ‘ 𝐾 ) ) ) : ℕ0 ⟶ ℕ0  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑁 ‘ 𝑘 )  mod  ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑖 )  ∈  ℕ0 ) | 
						
							| 116 | 114 12 115 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  ∧  𝑖  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑁 ‘ 𝑘 )  mod  ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑖 )  ∈  ℕ0 ) | 
						
							| 117 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 118 |  | vex | ⊢ 𝑖  ∈  V | 
						
							| 119 |  | oveq12 | ⊢ ( ( 𝑥  =  0  ∧  𝑦  =  𝑖 )  →  ( 𝑥  ·  𝑦 )  =  ( 0  ·  𝑖 ) ) | 
						
							| 120 | 119 | oveq1d | ⊢ ( ( 𝑥  =  0  ∧  𝑦  =  𝑖 )  →  ( ( 𝑥  ·  𝑦 )  mod  ( 𝑁 ‘ 𝐾 ) )  =  ( ( 0  ·  𝑖 )  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 121 |  | ovex | ⊢ ( ( 0  ·  𝑖 )  mod  ( 𝑁 ‘ 𝐾 ) )  ∈  V | 
						
							| 122 | 120 7 121 | ovmpoa | ⊢ ( ( 0  ∈  V  ∧  𝑖  ∈  V )  →  ( 0 𝑃 𝑖 )  =  ( ( 0  ·  𝑖 )  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 123 | 117 118 122 | mp2an | ⊢ ( 0 𝑃 𝑖 )  =  ( ( 0  ·  𝑖 )  mod  ( 𝑁 ‘ 𝐾 ) ) | 
						
							| 124 |  | nn0cn | ⊢ ( 𝑖  ∈  ℕ0  →  𝑖  ∈  ℂ ) | 
						
							| 125 | 124 | mul02d | ⊢ ( 𝑖  ∈  ℕ0  →  ( 0  ·  𝑖 )  =  0 ) | 
						
							| 126 | 125 | oveq1d | ⊢ ( 𝑖  ∈  ℕ0  →  ( ( 0  ·  𝑖 )  mod  ( 𝑁 ‘ 𝐾 ) )  =  ( 0  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 127 | 96 | nnrpd | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( 𝑁 ‘ 𝐾 )  ∈  ℝ+ ) | 
						
							| 128 |  | 0mod | ⊢ ( ( 𝑁 ‘ 𝐾 )  ∈  ℝ+  →  ( 0  mod  ( 𝑁 ‘ 𝐾 ) )  =  0 ) | 
						
							| 129 | 127 128 | syl | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( 0  mod  ( 𝑁 ‘ 𝐾 ) )  =  0 ) | 
						
							| 130 | 126 129 | sylan9eqr | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  ∧  𝑖  ∈  ℕ0 )  →  ( ( 0  ·  𝑖 )  mod  ( 𝑁 ‘ 𝐾 ) )  =  0 ) | 
						
							| 131 | 123 130 | eqtrid | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  ∧  𝑖  ∈  ℕ0 )  →  ( 0 𝑃 𝑖 )  =  0 ) | 
						
							| 132 |  | oveq12 | ⊢ ( ( 𝑥  =  𝑖  ∧  𝑦  =  0 )  →  ( 𝑥  ·  𝑦 )  =  ( 𝑖  ·  0 ) ) | 
						
							| 133 | 132 | oveq1d | ⊢ ( ( 𝑥  =  𝑖  ∧  𝑦  =  0 )  →  ( ( 𝑥  ·  𝑦 )  mod  ( 𝑁 ‘ 𝐾 ) )  =  ( ( 𝑖  ·  0 )  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 134 |  | ovex | ⊢ ( ( 𝑖  ·  0 )  mod  ( 𝑁 ‘ 𝐾 ) )  ∈  V | 
						
							| 135 | 133 7 134 | ovmpoa | ⊢ ( ( 𝑖  ∈  V  ∧  0  ∈  V )  →  ( 𝑖 𝑃 0 )  =  ( ( 𝑖  ·  0 )  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 136 | 118 117 135 | mp2an | ⊢ ( 𝑖 𝑃 0 )  =  ( ( 𝑖  ·  0 )  mod  ( 𝑁 ‘ 𝐾 ) ) | 
						
							| 137 | 124 | mul01d | ⊢ ( 𝑖  ∈  ℕ0  →  ( 𝑖  ·  0 )  =  0 ) | 
						
							| 138 | 137 | oveq1d | ⊢ ( 𝑖  ∈  ℕ0  →  ( ( 𝑖  ·  0 )  mod  ( 𝑁 ‘ 𝐾 ) )  =  ( 0  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 139 | 138 129 | sylan9eqr | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑖  ·  0 )  mod  ( 𝑁 ‘ 𝐾 ) )  =  0 ) | 
						
							| 140 | 136 139 | eqtrid | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑖 𝑃 0 )  =  0 ) | 
						
							| 141 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  𝐾  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) ) | 
						
							| 142 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( deg ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 143 | 8 | adantl | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  𝐾  ∈  ℕ0 ) | 
						
							| 144 |  | fveq2 | ⊢ ( 𝑘  =  𝐾  →  ( 𝑁 ‘ 𝑘 )  =  ( 𝑁 ‘ 𝐾 ) ) | 
						
							| 145 | 144 | oveq1d | ⊢ ( 𝑘  =  𝐾  →  ( ( 𝑁 ‘ 𝑘 )  mod  ( 𝑁 ‘ 𝐾 ) )  =  ( ( 𝑁 ‘ 𝐾 )  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 146 |  | ovex | ⊢ ( ( 𝑁 ‘ 𝐾 )  mod  ( 𝑁 ‘ 𝐾 ) )  ∈  V | 
						
							| 147 | 145 71 146 | fvmpt | ⊢ ( 𝐾  ∈  ℕ0  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑁 ‘ 𝑘 )  mod  ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝐾 )  =  ( ( 𝑁 ‘ 𝐾 )  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 148 | 143 147 | syl | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑁 ‘ 𝑘 )  mod  ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝐾 )  =  ( ( 𝑁 ‘ 𝐾 )  mod  ( 𝑁 ‘ 𝐾 ) ) ) | 
						
							| 149 | 96 | nncnd | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( 𝑁 ‘ 𝐾 )  ∈  ℂ ) | 
						
							| 150 | 96 | nnne0d | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( 𝑁 ‘ 𝐾 )  ≠  0 ) | 
						
							| 151 | 149 150 | dividd | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( ( 𝑁 ‘ 𝐾 )  /  ( 𝑁 ‘ 𝐾 ) )  =  1 ) | 
						
							| 152 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 153 | 151 152 | eqeltrdi | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( ( 𝑁 ‘ 𝐾 )  /  ( 𝑁 ‘ 𝐾 ) )  ∈  ℤ ) | 
						
							| 154 | 96 | nnred | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( 𝑁 ‘ 𝐾 )  ∈  ℝ ) | 
						
							| 155 |  | mod0 | ⊢ ( ( ( 𝑁 ‘ 𝐾 )  ∈  ℝ  ∧  ( 𝑁 ‘ 𝐾 )  ∈  ℝ+ )  →  ( ( ( 𝑁 ‘ 𝐾 )  mod  ( 𝑁 ‘ 𝐾 ) )  =  0  ↔  ( ( 𝑁 ‘ 𝐾 )  /  ( 𝑁 ‘ 𝐾 ) )  ∈  ℤ ) ) | 
						
							| 156 | 154 127 155 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( ( ( 𝑁 ‘ 𝐾 )  mod  ( 𝑁 ‘ 𝐾 ) )  =  0  ↔  ( ( 𝑁 ‘ 𝐾 )  /  ( 𝑁 ‘ 𝐾 ) )  ∈  ℤ ) ) | 
						
							| 157 | 153 156 | mpbird | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( ( 𝑁 ‘ 𝐾 )  mod  ( 𝑁 ‘ 𝐾 ) )  =  0 ) | 
						
							| 158 | 148 157 | eqtrd | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑁 ‘ 𝑘 )  mod  ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝐾 )  =  0 ) | 
						
							| 159 | 99 116 131 140 141 142 158 | seqz | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( seq 0 ( 𝑃 ,  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑁 ‘ 𝑘 )  mod  ( 𝑁 ‘ 𝐾 ) ) ) ) ‘ ( deg ‘ 𝐹 ) )  =  0 ) | 
						
							| 160 | 78 89 159 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( 𝑅  mod  ( 𝑁 ‘ 𝐾 ) )  =  0 ) |