Step |
Hyp |
Ref |
Expression |
1 |
|
elqaa.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
elqaa.2 |
⊢ ( 𝜑 → 𝐹 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ) |
3 |
|
elqaa.3 |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = 0 ) |
4 |
|
elqaa.4 |
⊢ 𝐵 = ( coeff ‘ 𝐹 ) |
5 |
|
elqaa.5 |
⊢ 𝑁 = ( 𝑘 ∈ ℕ0 ↦ inf ( { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝑘 ) · 𝑛 ) ∈ ℤ } , ℝ , < ) ) |
6 |
|
elqaa.6 |
⊢ 𝑅 = ( seq 0 ( · , 𝑁 ) ‘ ( deg ‘ 𝐹 ) ) |
7 |
|
cnex |
⊢ ℂ ∈ V |
8 |
7
|
a1i |
⊢ ( 𝜑 → ℂ ∈ V ) |
9 |
6
|
fvexi |
⊢ 𝑅 ∈ V |
10 |
9
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → 𝑅 ∈ V ) |
11 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 𝐹 ‘ 𝑧 ) ∈ V ) |
12 |
|
fconstmpt |
⊢ ( ℂ × { 𝑅 } ) = ( 𝑧 ∈ ℂ ↦ 𝑅 ) |
13 |
12
|
a1i |
⊢ ( 𝜑 → ( ℂ × { 𝑅 } ) = ( 𝑧 ∈ ℂ ↦ 𝑅 ) ) |
14 |
2
|
eldifad |
⊢ ( 𝜑 → 𝐹 ∈ ( Poly ‘ ℚ ) ) |
15 |
|
plyf |
⊢ ( 𝐹 ∈ ( Poly ‘ ℚ ) → 𝐹 : ℂ ⟶ ℂ ) |
16 |
14 15
|
syl |
⊢ ( 𝜑 → 𝐹 : ℂ ⟶ ℂ ) |
17 |
16
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
18 |
8 10 11 13 17
|
offval2 |
⊢ ( 𝜑 → ( ( ℂ × { 𝑅 } ) ∘f · 𝐹 ) = ( 𝑧 ∈ ℂ ↦ ( 𝑅 · ( 𝐹 ‘ 𝑧 ) ) ) ) |
19 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 0 ... ( deg ‘ 𝐹 ) ) ∈ Fin ) |
20 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
21 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
22 |
|
ssrab2 |
⊢ { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝑚 ) · 𝑛 ) ∈ ℤ } ⊆ ℕ |
23 |
|
fveq2 |
⊢ ( 𝑘 = 𝑚 → ( 𝐵 ‘ 𝑘 ) = ( 𝐵 ‘ 𝑚 ) ) |
24 |
23
|
oveq1d |
⊢ ( 𝑘 = 𝑚 → ( ( 𝐵 ‘ 𝑘 ) · 𝑛 ) = ( ( 𝐵 ‘ 𝑚 ) · 𝑛 ) ) |
25 |
24
|
eleq1d |
⊢ ( 𝑘 = 𝑚 → ( ( ( 𝐵 ‘ 𝑘 ) · 𝑛 ) ∈ ℤ ↔ ( ( 𝐵 ‘ 𝑚 ) · 𝑛 ) ∈ ℤ ) ) |
26 |
25
|
rabbidv |
⊢ ( 𝑘 = 𝑚 → { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝑘 ) · 𝑛 ) ∈ ℤ } = { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝑚 ) · 𝑛 ) ∈ ℤ } ) |
27 |
26
|
infeq1d |
⊢ ( 𝑘 = 𝑚 → inf ( { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝑘 ) · 𝑛 ) ∈ ℤ } , ℝ , < ) = inf ( { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝑚 ) · 𝑛 ) ∈ ℤ } , ℝ , < ) ) |
28 |
|
ltso |
⊢ < Or ℝ |
29 |
28
|
infex |
⊢ inf ( { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝑚 ) · 𝑛 ) ∈ ℤ } , ℝ , < ) ∈ V |
30 |
27 5 29
|
fvmpt |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑁 ‘ 𝑚 ) = inf ( { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝑚 ) · 𝑛 ) ∈ ℤ } , ℝ , < ) ) |
31 |
30
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝑁 ‘ 𝑚 ) = inf ( { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝑚 ) · 𝑛 ) ∈ ℤ } , ℝ , < ) ) |
32 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
33 |
22 32
|
sseqtri |
⊢ { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝑚 ) · 𝑛 ) ∈ ℤ } ⊆ ( ℤ≥ ‘ 1 ) |
34 |
|
0z |
⊢ 0 ∈ ℤ |
35 |
|
zq |
⊢ ( 0 ∈ ℤ → 0 ∈ ℚ ) |
36 |
34 35
|
ax-mp |
⊢ 0 ∈ ℚ |
37 |
4
|
coef2 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℚ ) ∧ 0 ∈ ℚ ) → 𝐵 : ℕ0 ⟶ ℚ ) |
38 |
14 36 37
|
sylancl |
⊢ ( 𝜑 → 𝐵 : ℕ0 ⟶ ℚ ) |
39 |
38
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝐵 ‘ 𝑚 ) ∈ ℚ ) |
40 |
|
qmulz |
⊢ ( ( 𝐵 ‘ 𝑚 ) ∈ ℚ → ∃ 𝑛 ∈ ℕ ( ( 𝐵 ‘ 𝑚 ) · 𝑛 ) ∈ ℤ ) |
41 |
39 40
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ∃ 𝑛 ∈ ℕ ( ( 𝐵 ‘ 𝑚 ) · 𝑛 ) ∈ ℤ ) |
42 |
|
rabn0 |
⊢ ( { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝑚 ) · 𝑛 ) ∈ ℤ } ≠ ∅ ↔ ∃ 𝑛 ∈ ℕ ( ( 𝐵 ‘ 𝑚 ) · 𝑛 ) ∈ ℤ ) |
43 |
41 42
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝑚 ) · 𝑛 ) ∈ ℤ } ≠ ∅ ) |
44 |
|
infssuzcl |
⊢ ( ( { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝑚 ) · 𝑛 ) ∈ ℤ } ⊆ ( ℤ≥ ‘ 1 ) ∧ { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝑚 ) · 𝑛 ) ∈ ℤ } ≠ ∅ ) → inf ( { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝑚 ) · 𝑛 ) ∈ ℤ } , ℝ , < ) ∈ { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝑚 ) · 𝑛 ) ∈ ℤ } ) |
45 |
33 43 44
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → inf ( { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝑚 ) · 𝑛 ) ∈ ℤ } , ℝ , < ) ∈ { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝑚 ) · 𝑛 ) ∈ ℤ } ) |
46 |
31 45
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝑁 ‘ 𝑚 ) ∈ { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝑚 ) · 𝑛 ) ∈ ℤ } ) |
47 |
22 46
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝑁 ‘ 𝑚 ) ∈ ℕ ) |
48 |
|
nnmulcl |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ ) → ( 𝑚 · 𝑘 ) ∈ ℕ ) |
49 |
48
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( 𝑚 · 𝑘 ) ∈ ℕ ) |
50 |
20 21 47 49
|
seqf |
⊢ ( 𝜑 → seq 0 ( · , 𝑁 ) : ℕ0 ⟶ ℕ ) |
51 |
|
dgrcl |
⊢ ( 𝐹 ∈ ( Poly ‘ ℚ ) → ( deg ‘ 𝐹 ) ∈ ℕ0 ) |
52 |
14 51
|
syl |
⊢ ( 𝜑 → ( deg ‘ 𝐹 ) ∈ ℕ0 ) |
53 |
50 52
|
ffvelrnd |
⊢ ( 𝜑 → ( seq 0 ( · , 𝑁 ) ‘ ( deg ‘ 𝐹 ) ) ∈ ℕ ) |
54 |
6 53
|
eqeltrid |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
55 |
54
|
nncnd |
⊢ ( 𝜑 → 𝑅 ∈ ℂ ) |
56 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → 𝑅 ∈ ℂ ) |
57 |
|
elfznn0 |
⊢ ( 𝑚 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) → 𝑚 ∈ ℕ0 ) |
58 |
4
|
coef3 |
⊢ ( 𝐹 ∈ ( Poly ‘ ℚ ) → 𝐵 : ℕ0 ⟶ ℂ ) |
59 |
14 58
|
syl |
⊢ ( 𝜑 → 𝐵 : ℕ0 ⟶ ℂ ) |
60 |
59
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → 𝐵 : ℕ0 ⟶ ℂ ) |
61 |
60
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝐵 ‘ 𝑚 ) ∈ ℂ ) |
62 |
|
expcl |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑚 ∈ ℕ0 ) → ( 𝑧 ↑ 𝑚 ) ∈ ℂ ) |
63 |
62
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝑧 ↑ 𝑚 ) ∈ ℂ ) |
64 |
61 63
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝐵 ‘ 𝑚 ) · ( 𝑧 ↑ 𝑚 ) ) ∈ ℂ ) |
65 |
57 64
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑚 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( ( 𝐵 ‘ 𝑚 ) · ( 𝑧 ↑ 𝑚 ) ) ∈ ℂ ) |
66 |
19 56 65
|
fsummulc2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 𝑅 · Σ 𝑚 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ( ( 𝐵 ‘ 𝑚 ) · ( 𝑧 ↑ 𝑚 ) ) ) = Σ 𝑚 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ( 𝑅 · ( ( 𝐵 ‘ 𝑚 ) · ( 𝑧 ↑ 𝑚 ) ) ) ) |
67 |
|
eqid |
⊢ ( deg ‘ 𝐹 ) = ( deg ‘ 𝐹 ) |
68 |
4 67
|
coeid2 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℚ ) ∧ 𝑧 ∈ ℂ ) → ( 𝐹 ‘ 𝑧 ) = Σ 𝑚 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ( ( 𝐵 ‘ 𝑚 ) · ( 𝑧 ↑ 𝑚 ) ) ) |
69 |
14 68
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 𝐹 ‘ 𝑧 ) = Σ 𝑚 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ( ( 𝐵 ‘ 𝑚 ) · ( 𝑧 ↑ 𝑚 ) ) ) |
70 |
69
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 𝑅 · ( 𝐹 ‘ 𝑧 ) ) = ( 𝑅 · Σ 𝑚 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ( ( 𝐵 ‘ 𝑚 ) · ( 𝑧 ↑ 𝑚 ) ) ) ) |
71 |
56
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑚 ∈ ℕ0 ) → 𝑅 ∈ ℂ ) |
72 |
71 61 63
|
mulassd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑅 · ( 𝐵 ‘ 𝑚 ) ) · ( 𝑧 ↑ 𝑚 ) ) = ( 𝑅 · ( ( 𝐵 ‘ 𝑚 ) · ( 𝑧 ↑ 𝑚 ) ) ) ) |
73 |
57 72
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑚 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( ( 𝑅 · ( 𝐵 ‘ 𝑚 ) ) · ( 𝑧 ↑ 𝑚 ) ) = ( 𝑅 · ( ( 𝐵 ‘ 𝑚 ) · ( 𝑧 ↑ 𝑚 ) ) ) ) |
74 |
73
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → Σ 𝑚 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ( ( 𝑅 · ( 𝐵 ‘ 𝑚 ) ) · ( 𝑧 ↑ 𝑚 ) ) = Σ 𝑚 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ( 𝑅 · ( ( 𝐵 ‘ 𝑚 ) · ( 𝑧 ↑ 𝑚 ) ) ) ) |
75 |
66 70 74
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 𝑅 · ( 𝐹 ‘ 𝑧 ) ) = Σ 𝑚 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ( ( 𝑅 · ( 𝐵 ‘ 𝑚 ) ) · ( 𝑧 ↑ 𝑚 ) ) ) |
76 |
75
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑧 ∈ ℂ ↦ ( 𝑅 · ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑚 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ( ( 𝑅 · ( 𝐵 ‘ 𝑚 ) ) · ( 𝑧 ↑ 𝑚 ) ) ) ) |
77 |
18 76
|
eqtrd |
⊢ ( 𝜑 → ( ( ℂ × { 𝑅 } ) ∘f · 𝐹 ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑚 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ( ( 𝑅 · ( 𝐵 ‘ 𝑚 ) ) · ( 𝑧 ↑ 𝑚 ) ) ) ) |
78 |
|
zsscn |
⊢ ℤ ⊆ ℂ |
79 |
78
|
a1i |
⊢ ( 𝜑 → ℤ ⊆ ℂ ) |
80 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → 𝑅 ∈ ℂ ) |
81 |
47
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝑁 ‘ 𝑚 ) ∈ ℂ ) |
82 |
47
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝑁 ‘ 𝑚 ) ≠ 0 ) |
83 |
80 81 82
|
divcan2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑁 ‘ 𝑚 ) · ( 𝑅 / ( 𝑁 ‘ 𝑚 ) ) ) = 𝑅 ) |
84 |
83
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝐵 ‘ 𝑚 ) · ( ( 𝑁 ‘ 𝑚 ) · ( 𝑅 / ( 𝑁 ‘ 𝑚 ) ) ) ) = ( ( 𝐵 ‘ 𝑚 ) · 𝑅 ) ) |
85 |
59
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝐵 ‘ 𝑚 ) ∈ ℂ ) |
86 |
80 81 82
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝑅 / ( 𝑁 ‘ 𝑚 ) ) ∈ ℂ ) |
87 |
85 81 86
|
mulassd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( ( 𝐵 ‘ 𝑚 ) · ( 𝑁 ‘ 𝑚 ) ) · ( 𝑅 / ( 𝑁 ‘ 𝑚 ) ) ) = ( ( 𝐵 ‘ 𝑚 ) · ( ( 𝑁 ‘ 𝑚 ) · ( 𝑅 / ( 𝑁 ‘ 𝑚 ) ) ) ) ) |
88 |
80 85
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝑅 · ( 𝐵 ‘ 𝑚 ) ) = ( ( 𝐵 ‘ 𝑚 ) · 𝑅 ) ) |
89 |
84 87 88
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝑅 · ( 𝐵 ‘ 𝑚 ) ) = ( ( ( 𝐵 ‘ 𝑚 ) · ( 𝑁 ‘ 𝑚 ) ) · ( 𝑅 / ( 𝑁 ‘ 𝑚 ) ) ) ) |
90 |
57 89
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( 𝑅 · ( 𝐵 ‘ 𝑚 ) ) = ( ( ( 𝐵 ‘ 𝑚 ) · ( 𝑁 ‘ 𝑚 ) ) · ( 𝑅 / ( 𝑁 ‘ 𝑚 ) ) ) ) |
91 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑁 ‘ 𝑚 ) → ( ( 𝐵 ‘ 𝑚 ) · 𝑛 ) = ( ( 𝐵 ‘ 𝑚 ) · ( 𝑁 ‘ 𝑚 ) ) ) |
92 |
91
|
eleq1d |
⊢ ( 𝑛 = ( 𝑁 ‘ 𝑚 ) → ( ( ( 𝐵 ‘ 𝑚 ) · 𝑛 ) ∈ ℤ ↔ ( ( 𝐵 ‘ 𝑚 ) · ( 𝑁 ‘ 𝑚 ) ) ∈ ℤ ) ) |
93 |
92
|
elrab |
⊢ ( ( 𝑁 ‘ 𝑚 ) ∈ { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝑚 ) · 𝑛 ) ∈ ℤ } ↔ ( ( 𝑁 ‘ 𝑚 ) ∈ ℕ ∧ ( ( 𝐵 ‘ 𝑚 ) · ( 𝑁 ‘ 𝑚 ) ) ∈ ℤ ) ) |
94 |
93
|
simprbi |
⊢ ( ( 𝑁 ‘ 𝑚 ) ∈ { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝑚 ) · 𝑛 ) ∈ ℤ } → ( ( 𝐵 ‘ 𝑚 ) · ( 𝑁 ‘ 𝑚 ) ) ∈ ℤ ) |
95 |
46 94
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝐵 ‘ 𝑚 ) · ( 𝑁 ‘ 𝑚 ) ) ∈ ℤ ) |
96 |
57 95
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( ( 𝐵 ‘ 𝑚 ) · ( 𝑁 ‘ 𝑚 ) ) ∈ ℤ ) |
97 |
|
eqid |
⊢ ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( ( 𝑥 · 𝑦 ) mod ( 𝑁 ‘ 𝑚 ) ) ) = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( ( 𝑥 · 𝑦 ) mod ( 𝑁 ‘ 𝑚 ) ) ) |
98 |
1 2 3 4 5 6 97
|
elqaalem2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( 𝑅 mod ( 𝑁 ‘ 𝑚 ) ) = 0 ) |
99 |
54
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → 𝑅 ∈ ℕ ) |
100 |
57 47
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( 𝑁 ‘ 𝑚 ) ∈ ℕ ) |
101 |
|
nnre |
⊢ ( 𝑅 ∈ ℕ → 𝑅 ∈ ℝ ) |
102 |
|
nnrp |
⊢ ( ( 𝑁 ‘ 𝑚 ) ∈ ℕ → ( 𝑁 ‘ 𝑚 ) ∈ ℝ+ ) |
103 |
|
mod0 |
⊢ ( ( 𝑅 ∈ ℝ ∧ ( 𝑁 ‘ 𝑚 ) ∈ ℝ+ ) → ( ( 𝑅 mod ( 𝑁 ‘ 𝑚 ) ) = 0 ↔ ( 𝑅 / ( 𝑁 ‘ 𝑚 ) ) ∈ ℤ ) ) |
104 |
101 102 103
|
syl2an |
⊢ ( ( 𝑅 ∈ ℕ ∧ ( 𝑁 ‘ 𝑚 ) ∈ ℕ ) → ( ( 𝑅 mod ( 𝑁 ‘ 𝑚 ) ) = 0 ↔ ( 𝑅 / ( 𝑁 ‘ 𝑚 ) ) ∈ ℤ ) ) |
105 |
99 100 104
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( ( 𝑅 mod ( 𝑁 ‘ 𝑚 ) ) = 0 ↔ ( 𝑅 / ( 𝑁 ‘ 𝑚 ) ) ∈ ℤ ) ) |
106 |
98 105
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( 𝑅 / ( 𝑁 ‘ 𝑚 ) ) ∈ ℤ ) |
107 |
96 106
|
zmulcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( ( ( 𝐵 ‘ 𝑚 ) · ( 𝑁 ‘ 𝑚 ) ) · ( 𝑅 / ( 𝑁 ‘ 𝑚 ) ) ) ∈ ℤ ) |
108 |
90 107
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( 𝑅 · ( 𝐵 ‘ 𝑚 ) ) ∈ ℤ ) |
109 |
79 52 108
|
elplyd |
⊢ ( 𝜑 → ( 𝑧 ∈ ℂ ↦ Σ 𝑚 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ( ( 𝑅 · ( 𝐵 ‘ 𝑚 ) ) · ( 𝑧 ↑ 𝑚 ) ) ) ∈ ( Poly ‘ ℤ ) ) |
110 |
77 109
|
eqeltrd |
⊢ ( 𝜑 → ( ( ℂ × { 𝑅 } ) ∘f · 𝐹 ) ∈ ( Poly ‘ ℤ ) ) |
111 |
|
eldifsn |
⊢ ( 𝐹 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ↔ ( 𝐹 ∈ ( Poly ‘ ℚ ) ∧ 𝐹 ≠ 0𝑝 ) ) |
112 |
2 111
|
sylib |
⊢ ( 𝜑 → ( 𝐹 ∈ ( Poly ‘ ℚ ) ∧ 𝐹 ≠ 0𝑝 ) ) |
113 |
112
|
simprd |
⊢ ( 𝜑 → 𝐹 ≠ 0𝑝 ) |
114 |
|
oveq1 |
⊢ ( ( ( ℂ × { 𝑅 } ) ∘f · 𝐹 ) = 0𝑝 → ( ( ( ℂ × { 𝑅 } ) ∘f · 𝐹 ) ∘f / ( ℂ × { 𝑅 } ) ) = ( 0𝑝 ∘f / ( ℂ × { 𝑅 } ) ) ) |
115 |
16
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
116 |
54
|
nnne0d |
⊢ ( 𝜑 → 𝑅 ≠ 0 ) |
117 |
116
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → 𝑅 ≠ 0 ) |
118 |
115 56 117
|
divcan3d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( ( 𝑅 · ( 𝐹 ‘ 𝑧 ) ) / 𝑅 ) = ( 𝐹 ‘ 𝑧 ) ) |
119 |
118
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑧 ∈ ℂ ↦ ( ( 𝑅 · ( 𝐹 ‘ 𝑧 ) ) / 𝑅 ) ) = ( 𝑧 ∈ ℂ ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
120 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 𝑅 · ( 𝐹 ‘ 𝑧 ) ) ∈ V ) |
121 |
8 120 10 18 13
|
offval2 |
⊢ ( 𝜑 → ( ( ( ℂ × { 𝑅 } ) ∘f · 𝐹 ) ∘f / ( ℂ × { 𝑅 } ) ) = ( 𝑧 ∈ ℂ ↦ ( ( 𝑅 · ( 𝐹 ‘ 𝑧 ) ) / 𝑅 ) ) ) |
122 |
119 121 17
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( ℂ × { 𝑅 } ) ∘f · 𝐹 ) ∘f / ( ℂ × { 𝑅 } ) ) = 𝐹 ) |
123 |
55 116
|
div0d |
⊢ ( 𝜑 → ( 0 / 𝑅 ) = 0 ) |
124 |
123
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑧 ∈ ℂ ↦ ( 0 / 𝑅 ) ) = ( 𝑧 ∈ ℂ ↦ 0 ) ) |
125 |
|
0cnd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → 0 ∈ ℂ ) |
126 |
|
df-0p |
⊢ 0𝑝 = ( ℂ × { 0 } ) |
127 |
|
fconstmpt |
⊢ ( ℂ × { 0 } ) = ( 𝑧 ∈ ℂ ↦ 0 ) |
128 |
126 127
|
eqtri |
⊢ 0𝑝 = ( 𝑧 ∈ ℂ ↦ 0 ) |
129 |
128
|
a1i |
⊢ ( 𝜑 → 0𝑝 = ( 𝑧 ∈ ℂ ↦ 0 ) ) |
130 |
8 125 10 129 13
|
offval2 |
⊢ ( 𝜑 → ( 0𝑝 ∘f / ( ℂ × { 𝑅 } ) ) = ( 𝑧 ∈ ℂ ↦ ( 0 / 𝑅 ) ) ) |
131 |
124 130 129
|
3eqtr4d |
⊢ ( 𝜑 → ( 0𝑝 ∘f / ( ℂ × { 𝑅 } ) ) = 0𝑝 ) |
132 |
122 131
|
eqeq12d |
⊢ ( 𝜑 → ( ( ( ( ℂ × { 𝑅 } ) ∘f · 𝐹 ) ∘f / ( ℂ × { 𝑅 } ) ) = ( 0𝑝 ∘f / ( ℂ × { 𝑅 } ) ) ↔ 𝐹 = 0𝑝 ) ) |
133 |
114 132
|
syl5ib |
⊢ ( 𝜑 → ( ( ( ℂ × { 𝑅 } ) ∘f · 𝐹 ) = 0𝑝 → 𝐹 = 0𝑝 ) ) |
134 |
133
|
necon3d |
⊢ ( 𝜑 → ( 𝐹 ≠ 0𝑝 → ( ( ℂ × { 𝑅 } ) ∘f · 𝐹 ) ≠ 0𝑝 ) ) |
135 |
113 134
|
mpd |
⊢ ( 𝜑 → ( ( ℂ × { 𝑅 } ) ∘f · 𝐹 ) ≠ 0𝑝 ) |
136 |
|
eldifsn |
⊢ ( ( ( ℂ × { 𝑅 } ) ∘f · 𝐹 ) ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ↔ ( ( ( ℂ × { 𝑅 } ) ∘f · 𝐹 ) ∈ ( Poly ‘ ℤ ) ∧ ( ( ℂ × { 𝑅 } ) ∘f · 𝐹 ) ≠ 0𝑝 ) ) |
137 |
110 135 136
|
sylanbrc |
⊢ ( 𝜑 → ( ( ℂ × { 𝑅 } ) ∘f · 𝐹 ) ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ) |
138 |
9
|
fconst |
⊢ ( ℂ × { 𝑅 } ) : ℂ ⟶ { 𝑅 } |
139 |
|
ffn |
⊢ ( ( ℂ × { 𝑅 } ) : ℂ ⟶ { 𝑅 } → ( ℂ × { 𝑅 } ) Fn ℂ ) |
140 |
138 139
|
mp1i |
⊢ ( 𝜑 → ( ℂ × { 𝑅 } ) Fn ℂ ) |
141 |
16
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ℂ ) |
142 |
|
inidm |
⊢ ( ℂ ∩ ℂ ) = ℂ |
143 |
9
|
fvconst2 |
⊢ ( 𝐴 ∈ ℂ → ( ( ℂ × { 𝑅 } ) ‘ 𝐴 ) = 𝑅 ) |
144 |
143
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) → ( ( ℂ × { 𝑅 } ) ‘ 𝐴 ) = 𝑅 ) |
145 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) → ( 𝐹 ‘ 𝐴 ) = 0 ) |
146 |
140 141 8 8 142 144 145
|
ofval |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) → ( ( ( ℂ × { 𝑅 } ) ∘f · 𝐹 ) ‘ 𝐴 ) = ( 𝑅 · 0 ) ) |
147 |
1 146
|
mpdan |
⊢ ( 𝜑 → ( ( ( ℂ × { 𝑅 } ) ∘f · 𝐹 ) ‘ 𝐴 ) = ( 𝑅 · 0 ) ) |
148 |
55
|
mul01d |
⊢ ( 𝜑 → ( 𝑅 · 0 ) = 0 ) |
149 |
147 148
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ℂ × { 𝑅 } ) ∘f · 𝐹 ) ‘ 𝐴 ) = 0 ) |
150 |
|
fveq1 |
⊢ ( 𝑓 = ( ( ℂ × { 𝑅 } ) ∘f · 𝐹 ) → ( 𝑓 ‘ 𝐴 ) = ( ( ( ℂ × { 𝑅 } ) ∘f · 𝐹 ) ‘ 𝐴 ) ) |
151 |
150
|
eqeq1d |
⊢ ( 𝑓 = ( ( ℂ × { 𝑅 } ) ∘f · 𝐹 ) → ( ( 𝑓 ‘ 𝐴 ) = 0 ↔ ( ( ( ℂ × { 𝑅 } ) ∘f · 𝐹 ) ‘ 𝐴 ) = 0 ) ) |
152 |
151
|
rspcev |
⊢ ( ( ( ( ℂ × { 𝑅 } ) ∘f · 𝐹 ) ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( ( ( ℂ × { 𝑅 } ) ∘f · 𝐹 ) ‘ 𝐴 ) = 0 ) → ∃ 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑓 ‘ 𝐴 ) = 0 ) |
153 |
137 149 152
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑓 ‘ 𝐴 ) = 0 ) |
154 |
|
elaa |
⊢ ( 𝐴 ∈ 𝔸 ↔ ( 𝐴 ∈ ℂ ∧ ∃ 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑓 ‘ 𝐴 ) = 0 ) ) |
155 |
1 153 154
|
sylanbrc |
⊢ ( 𝜑 → 𝐴 ∈ 𝔸 ) |