| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elqaa.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | elqaa.2 | ⊢ ( 𝜑  →  𝐹  ∈  ( ( Poly ‘ ℚ )  ∖  { 0𝑝 } ) ) | 
						
							| 3 |  | elqaa.3 | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐴 )  =  0 ) | 
						
							| 4 |  | elqaa.4 | ⊢ 𝐵  =  ( coeff ‘ 𝐹 ) | 
						
							| 5 |  | elqaa.5 | ⊢ 𝑁  =  ( 𝑘  ∈  ℕ0  ↦  inf ( { 𝑛  ∈  ℕ  ∣  ( ( 𝐵 ‘ 𝑘 )  ·  𝑛 )  ∈  ℤ } ,  ℝ ,   <  ) ) | 
						
							| 6 |  | elqaa.6 | ⊢ 𝑅  =  ( seq 0 (  ·  ,  𝑁 ) ‘ ( deg ‘ 𝐹 ) ) | 
						
							| 7 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 8 | 7 | a1i | ⊢ ( 𝜑  →  ℂ  ∈  V ) | 
						
							| 9 | 6 | fvexi | ⊢ 𝑅  ∈  V | 
						
							| 10 | 9 | a1i | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  𝑅  ∈  V ) | 
						
							| 11 |  | fvexd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( 𝐹 ‘ 𝑧 )  ∈  V ) | 
						
							| 12 |  | fconstmpt | ⊢ ( ℂ  ×  { 𝑅 } )  =  ( 𝑧  ∈  ℂ  ↦  𝑅 ) | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  ( ℂ  ×  { 𝑅 } )  =  ( 𝑧  ∈  ℂ  ↦  𝑅 ) ) | 
						
							| 14 | 2 | eldifad | ⊢ ( 𝜑  →  𝐹  ∈  ( Poly ‘ ℚ ) ) | 
						
							| 15 |  | plyf | ⊢ ( 𝐹  ∈  ( Poly ‘ ℚ )  →  𝐹 : ℂ ⟶ ℂ ) | 
						
							| 16 | 14 15 | syl | ⊢ ( 𝜑  →  𝐹 : ℂ ⟶ ℂ ) | 
						
							| 17 | 16 | feqmptd | ⊢ ( 𝜑  →  𝐹  =  ( 𝑧  ∈  ℂ  ↦  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 18 | 8 10 11 13 17 | offval2 | ⊢ ( 𝜑  →  ( ( ℂ  ×  { 𝑅 } )  ∘f   ·  𝐹 )  =  ( 𝑧  ∈  ℂ  ↦  ( 𝑅  ·  ( 𝐹 ‘ 𝑧 ) ) ) ) | 
						
							| 19 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( 0 ... ( deg ‘ 𝐹 ) )  ∈  Fin ) | 
						
							| 20 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 21 |  | 0zd | ⊢ ( 𝜑  →  0  ∈  ℤ ) | 
						
							| 22 |  | ssrab2 | ⊢ { 𝑛  ∈  ℕ  ∣  ( ( 𝐵 ‘ 𝑚 )  ·  𝑛 )  ∈  ℤ }  ⊆  ℕ | 
						
							| 23 |  | fveq2 | ⊢ ( 𝑘  =  𝑚  →  ( 𝐵 ‘ 𝑘 )  =  ( 𝐵 ‘ 𝑚 ) ) | 
						
							| 24 | 23 | oveq1d | ⊢ ( 𝑘  =  𝑚  →  ( ( 𝐵 ‘ 𝑘 )  ·  𝑛 )  =  ( ( 𝐵 ‘ 𝑚 )  ·  𝑛 ) ) | 
						
							| 25 | 24 | eleq1d | ⊢ ( 𝑘  =  𝑚  →  ( ( ( 𝐵 ‘ 𝑘 )  ·  𝑛 )  ∈  ℤ  ↔  ( ( 𝐵 ‘ 𝑚 )  ·  𝑛 )  ∈  ℤ ) ) | 
						
							| 26 | 25 | rabbidv | ⊢ ( 𝑘  =  𝑚  →  { 𝑛  ∈  ℕ  ∣  ( ( 𝐵 ‘ 𝑘 )  ·  𝑛 )  ∈  ℤ }  =  { 𝑛  ∈  ℕ  ∣  ( ( 𝐵 ‘ 𝑚 )  ·  𝑛 )  ∈  ℤ } ) | 
						
							| 27 | 26 | infeq1d | ⊢ ( 𝑘  =  𝑚  →  inf ( { 𝑛  ∈  ℕ  ∣  ( ( 𝐵 ‘ 𝑘 )  ·  𝑛 )  ∈  ℤ } ,  ℝ ,   <  )  =  inf ( { 𝑛  ∈  ℕ  ∣  ( ( 𝐵 ‘ 𝑚 )  ·  𝑛 )  ∈  ℤ } ,  ℝ ,   <  ) ) | 
						
							| 28 |  | ltso | ⊢  <   Or  ℝ | 
						
							| 29 | 28 | infex | ⊢ inf ( { 𝑛  ∈  ℕ  ∣  ( ( 𝐵 ‘ 𝑚 )  ·  𝑛 )  ∈  ℤ } ,  ℝ ,   <  )  ∈  V | 
						
							| 30 | 27 5 29 | fvmpt | ⊢ ( 𝑚  ∈  ℕ0  →  ( 𝑁 ‘ 𝑚 )  =  inf ( { 𝑛  ∈  ℕ  ∣  ( ( 𝐵 ‘ 𝑚 )  ·  𝑛 )  ∈  ℤ } ,  ℝ ,   <  ) ) | 
						
							| 31 | 30 | adantl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( 𝑁 ‘ 𝑚 )  =  inf ( { 𝑛  ∈  ℕ  ∣  ( ( 𝐵 ‘ 𝑚 )  ·  𝑛 )  ∈  ℤ } ,  ℝ ,   <  ) ) | 
						
							| 32 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 33 | 22 32 | sseqtri | ⊢ { 𝑛  ∈  ℕ  ∣  ( ( 𝐵 ‘ 𝑚 )  ·  𝑛 )  ∈  ℤ }  ⊆  ( ℤ≥ ‘ 1 ) | 
						
							| 34 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 35 |  | zq | ⊢ ( 0  ∈  ℤ  →  0  ∈  ℚ ) | 
						
							| 36 | 34 35 | ax-mp | ⊢ 0  ∈  ℚ | 
						
							| 37 | 4 | coef2 | ⊢ ( ( 𝐹  ∈  ( Poly ‘ ℚ )  ∧  0  ∈  ℚ )  →  𝐵 : ℕ0 ⟶ ℚ ) | 
						
							| 38 | 14 36 37 | sylancl | ⊢ ( 𝜑  →  𝐵 : ℕ0 ⟶ ℚ ) | 
						
							| 39 | 38 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( 𝐵 ‘ 𝑚 )  ∈  ℚ ) | 
						
							| 40 |  | qmulz | ⊢ ( ( 𝐵 ‘ 𝑚 )  ∈  ℚ  →  ∃ 𝑛  ∈  ℕ ( ( 𝐵 ‘ 𝑚 )  ·  𝑛 )  ∈  ℤ ) | 
						
							| 41 | 39 40 | syl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ∃ 𝑛  ∈  ℕ ( ( 𝐵 ‘ 𝑚 )  ·  𝑛 )  ∈  ℤ ) | 
						
							| 42 |  | rabn0 | ⊢ ( { 𝑛  ∈  ℕ  ∣  ( ( 𝐵 ‘ 𝑚 )  ·  𝑛 )  ∈  ℤ }  ≠  ∅  ↔  ∃ 𝑛  ∈  ℕ ( ( 𝐵 ‘ 𝑚 )  ·  𝑛 )  ∈  ℤ ) | 
						
							| 43 | 41 42 | sylibr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  { 𝑛  ∈  ℕ  ∣  ( ( 𝐵 ‘ 𝑚 )  ·  𝑛 )  ∈  ℤ }  ≠  ∅ ) | 
						
							| 44 |  | infssuzcl | ⊢ ( ( { 𝑛  ∈  ℕ  ∣  ( ( 𝐵 ‘ 𝑚 )  ·  𝑛 )  ∈  ℤ }  ⊆  ( ℤ≥ ‘ 1 )  ∧  { 𝑛  ∈  ℕ  ∣  ( ( 𝐵 ‘ 𝑚 )  ·  𝑛 )  ∈  ℤ }  ≠  ∅ )  →  inf ( { 𝑛  ∈  ℕ  ∣  ( ( 𝐵 ‘ 𝑚 )  ·  𝑛 )  ∈  ℤ } ,  ℝ ,   <  )  ∈  { 𝑛  ∈  ℕ  ∣  ( ( 𝐵 ‘ 𝑚 )  ·  𝑛 )  ∈  ℤ } ) | 
						
							| 45 | 33 43 44 | sylancr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  inf ( { 𝑛  ∈  ℕ  ∣  ( ( 𝐵 ‘ 𝑚 )  ·  𝑛 )  ∈  ℤ } ,  ℝ ,   <  )  ∈  { 𝑛  ∈  ℕ  ∣  ( ( 𝐵 ‘ 𝑚 )  ·  𝑛 )  ∈  ℤ } ) | 
						
							| 46 | 31 45 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( 𝑁 ‘ 𝑚 )  ∈  { 𝑛  ∈  ℕ  ∣  ( ( 𝐵 ‘ 𝑚 )  ·  𝑛 )  ∈  ℤ } ) | 
						
							| 47 | 22 46 | sselid | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( 𝑁 ‘ 𝑚 )  ∈  ℕ ) | 
						
							| 48 |  | nnmulcl | ⊢ ( ( 𝑚  ∈  ℕ  ∧  𝑘  ∈  ℕ )  →  ( 𝑚  ·  𝑘 )  ∈  ℕ ) | 
						
							| 49 | 48 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ℕ  ∧  𝑘  ∈  ℕ ) )  →  ( 𝑚  ·  𝑘 )  ∈  ℕ ) | 
						
							| 50 | 20 21 47 49 | seqf | ⊢ ( 𝜑  →  seq 0 (  ·  ,  𝑁 ) : ℕ0 ⟶ ℕ ) | 
						
							| 51 |  | dgrcl | ⊢ ( 𝐹  ∈  ( Poly ‘ ℚ )  →  ( deg ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 52 | 14 51 | syl | ⊢ ( 𝜑  →  ( deg ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 53 | 50 52 | ffvelcdmd | ⊢ ( 𝜑  →  ( seq 0 (  ·  ,  𝑁 ) ‘ ( deg ‘ 𝐹 ) )  ∈  ℕ ) | 
						
							| 54 | 6 53 | eqeltrid | ⊢ ( 𝜑  →  𝑅  ∈  ℕ ) | 
						
							| 55 | 54 | nncnd | ⊢ ( 𝜑  →  𝑅  ∈  ℂ ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  𝑅  ∈  ℂ ) | 
						
							| 57 |  | elfznn0 | ⊢ ( 𝑚  ∈  ( 0 ... ( deg ‘ 𝐹 ) )  →  𝑚  ∈  ℕ0 ) | 
						
							| 58 | 4 | coef3 | ⊢ ( 𝐹  ∈  ( Poly ‘ ℚ )  →  𝐵 : ℕ0 ⟶ ℂ ) | 
						
							| 59 | 14 58 | syl | ⊢ ( 𝜑  →  𝐵 : ℕ0 ⟶ ℂ ) | 
						
							| 60 | 59 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  𝐵 : ℕ0 ⟶ ℂ ) | 
						
							| 61 | 60 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑚  ∈  ℕ0 )  →  ( 𝐵 ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 62 |  | expcl | ⊢ ( ( 𝑧  ∈  ℂ  ∧  𝑚  ∈  ℕ0 )  →  ( 𝑧 ↑ 𝑚 )  ∈  ℂ ) | 
						
							| 63 | 62 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑚  ∈  ℕ0 )  →  ( 𝑧 ↑ 𝑚 )  ∈  ℂ ) | 
						
							| 64 | 61 63 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑚  ∈  ℕ0 )  →  ( ( 𝐵 ‘ 𝑚 )  ·  ( 𝑧 ↑ 𝑚 ) )  ∈  ℂ ) | 
						
							| 65 | 57 64 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑚  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( ( 𝐵 ‘ 𝑚 )  ·  ( 𝑧 ↑ 𝑚 ) )  ∈  ℂ ) | 
						
							| 66 | 19 56 65 | fsummulc2 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( 𝑅  ·  Σ 𝑚  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) ( ( 𝐵 ‘ 𝑚 )  ·  ( 𝑧 ↑ 𝑚 ) ) )  =  Σ 𝑚  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) ( 𝑅  ·  ( ( 𝐵 ‘ 𝑚 )  ·  ( 𝑧 ↑ 𝑚 ) ) ) ) | 
						
							| 67 |  | eqid | ⊢ ( deg ‘ 𝐹 )  =  ( deg ‘ 𝐹 ) | 
						
							| 68 | 4 67 | coeid2 | ⊢ ( ( 𝐹  ∈  ( Poly ‘ ℚ )  ∧  𝑧  ∈  ℂ )  →  ( 𝐹 ‘ 𝑧 )  =  Σ 𝑚  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) ( ( 𝐵 ‘ 𝑚 )  ·  ( 𝑧 ↑ 𝑚 ) ) ) | 
						
							| 69 | 14 68 | sylan | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( 𝐹 ‘ 𝑧 )  =  Σ 𝑚  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) ( ( 𝐵 ‘ 𝑚 )  ·  ( 𝑧 ↑ 𝑚 ) ) ) | 
						
							| 70 | 69 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( 𝑅  ·  ( 𝐹 ‘ 𝑧 ) )  =  ( 𝑅  ·  Σ 𝑚  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) ( ( 𝐵 ‘ 𝑚 )  ·  ( 𝑧 ↑ 𝑚 ) ) ) ) | 
						
							| 71 | 56 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑚  ∈  ℕ0 )  →  𝑅  ∈  ℂ ) | 
						
							| 72 | 71 61 63 | mulassd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑚  ∈  ℕ0 )  →  ( ( 𝑅  ·  ( 𝐵 ‘ 𝑚 ) )  ·  ( 𝑧 ↑ 𝑚 ) )  =  ( 𝑅  ·  ( ( 𝐵 ‘ 𝑚 )  ·  ( 𝑧 ↑ 𝑚 ) ) ) ) | 
						
							| 73 | 57 72 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑚  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( ( 𝑅  ·  ( 𝐵 ‘ 𝑚 ) )  ·  ( 𝑧 ↑ 𝑚 ) )  =  ( 𝑅  ·  ( ( 𝐵 ‘ 𝑚 )  ·  ( 𝑧 ↑ 𝑚 ) ) ) ) | 
						
							| 74 | 73 | sumeq2dv | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  Σ 𝑚  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) ( ( 𝑅  ·  ( 𝐵 ‘ 𝑚 ) )  ·  ( 𝑧 ↑ 𝑚 ) )  =  Σ 𝑚  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) ( 𝑅  ·  ( ( 𝐵 ‘ 𝑚 )  ·  ( 𝑧 ↑ 𝑚 ) ) ) ) | 
						
							| 75 | 66 70 74 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( 𝑅  ·  ( 𝐹 ‘ 𝑧 ) )  =  Σ 𝑚  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) ( ( 𝑅  ·  ( 𝐵 ‘ 𝑚 ) )  ·  ( 𝑧 ↑ 𝑚 ) ) ) | 
						
							| 76 | 75 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑧  ∈  ℂ  ↦  ( 𝑅  ·  ( 𝐹 ‘ 𝑧 ) ) )  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑚  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) ( ( 𝑅  ·  ( 𝐵 ‘ 𝑚 ) )  ·  ( 𝑧 ↑ 𝑚 ) ) ) ) | 
						
							| 77 | 18 76 | eqtrd | ⊢ ( 𝜑  →  ( ( ℂ  ×  { 𝑅 } )  ∘f   ·  𝐹 )  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑚  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) ( ( 𝑅  ·  ( 𝐵 ‘ 𝑚 ) )  ·  ( 𝑧 ↑ 𝑚 ) ) ) ) | 
						
							| 78 |  | zsscn | ⊢ ℤ  ⊆  ℂ | 
						
							| 79 | 78 | a1i | ⊢ ( 𝜑  →  ℤ  ⊆  ℂ ) | 
						
							| 80 | 55 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  𝑅  ∈  ℂ ) | 
						
							| 81 | 47 | nncnd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( 𝑁 ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 82 | 47 | nnne0d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( 𝑁 ‘ 𝑚 )  ≠  0 ) | 
						
							| 83 | 80 81 82 | divcan2d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( ( 𝑁 ‘ 𝑚 )  ·  ( 𝑅  /  ( 𝑁 ‘ 𝑚 ) ) )  =  𝑅 ) | 
						
							| 84 | 83 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( ( 𝐵 ‘ 𝑚 )  ·  ( ( 𝑁 ‘ 𝑚 )  ·  ( 𝑅  /  ( 𝑁 ‘ 𝑚 ) ) ) )  =  ( ( 𝐵 ‘ 𝑚 )  ·  𝑅 ) ) | 
						
							| 85 | 59 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( 𝐵 ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 86 | 80 81 82 | divcld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( 𝑅  /  ( 𝑁 ‘ 𝑚 ) )  ∈  ℂ ) | 
						
							| 87 | 85 81 86 | mulassd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( ( ( 𝐵 ‘ 𝑚 )  ·  ( 𝑁 ‘ 𝑚 ) )  ·  ( 𝑅  /  ( 𝑁 ‘ 𝑚 ) ) )  =  ( ( 𝐵 ‘ 𝑚 )  ·  ( ( 𝑁 ‘ 𝑚 )  ·  ( 𝑅  /  ( 𝑁 ‘ 𝑚 ) ) ) ) ) | 
						
							| 88 | 80 85 | mulcomd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( 𝑅  ·  ( 𝐵 ‘ 𝑚 ) )  =  ( ( 𝐵 ‘ 𝑚 )  ·  𝑅 ) ) | 
						
							| 89 | 84 87 88 | 3eqtr4rd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( 𝑅  ·  ( 𝐵 ‘ 𝑚 ) )  =  ( ( ( 𝐵 ‘ 𝑚 )  ·  ( 𝑁 ‘ 𝑚 ) )  ·  ( 𝑅  /  ( 𝑁 ‘ 𝑚 ) ) ) ) | 
						
							| 90 | 57 89 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( 𝑅  ·  ( 𝐵 ‘ 𝑚 ) )  =  ( ( ( 𝐵 ‘ 𝑚 )  ·  ( 𝑁 ‘ 𝑚 ) )  ·  ( 𝑅  /  ( 𝑁 ‘ 𝑚 ) ) ) ) | 
						
							| 91 |  | oveq2 | ⊢ ( 𝑛  =  ( 𝑁 ‘ 𝑚 )  →  ( ( 𝐵 ‘ 𝑚 )  ·  𝑛 )  =  ( ( 𝐵 ‘ 𝑚 )  ·  ( 𝑁 ‘ 𝑚 ) ) ) | 
						
							| 92 | 91 | eleq1d | ⊢ ( 𝑛  =  ( 𝑁 ‘ 𝑚 )  →  ( ( ( 𝐵 ‘ 𝑚 )  ·  𝑛 )  ∈  ℤ  ↔  ( ( 𝐵 ‘ 𝑚 )  ·  ( 𝑁 ‘ 𝑚 ) )  ∈  ℤ ) ) | 
						
							| 93 | 92 | elrab | ⊢ ( ( 𝑁 ‘ 𝑚 )  ∈  { 𝑛  ∈  ℕ  ∣  ( ( 𝐵 ‘ 𝑚 )  ·  𝑛 )  ∈  ℤ }  ↔  ( ( 𝑁 ‘ 𝑚 )  ∈  ℕ  ∧  ( ( 𝐵 ‘ 𝑚 )  ·  ( 𝑁 ‘ 𝑚 ) )  ∈  ℤ ) ) | 
						
							| 94 | 93 | simprbi | ⊢ ( ( 𝑁 ‘ 𝑚 )  ∈  { 𝑛  ∈  ℕ  ∣  ( ( 𝐵 ‘ 𝑚 )  ·  𝑛 )  ∈  ℤ }  →  ( ( 𝐵 ‘ 𝑚 )  ·  ( 𝑁 ‘ 𝑚 ) )  ∈  ℤ ) | 
						
							| 95 | 46 94 | syl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( ( 𝐵 ‘ 𝑚 )  ·  ( 𝑁 ‘ 𝑚 ) )  ∈  ℤ ) | 
						
							| 96 | 57 95 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( ( 𝐵 ‘ 𝑚 )  ·  ( 𝑁 ‘ 𝑚 ) )  ∈  ℤ ) | 
						
							| 97 |  | eqid | ⊢ ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( ( 𝑥  ·  𝑦 )  mod  ( 𝑁 ‘ 𝑚 ) ) )  =  ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( ( 𝑥  ·  𝑦 )  mod  ( 𝑁 ‘ 𝑚 ) ) ) | 
						
							| 98 | 1 2 3 4 5 6 97 | elqaalem2 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( 𝑅  mod  ( 𝑁 ‘ 𝑚 ) )  =  0 ) | 
						
							| 99 | 54 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  𝑅  ∈  ℕ ) | 
						
							| 100 | 57 47 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( 𝑁 ‘ 𝑚 )  ∈  ℕ ) | 
						
							| 101 |  | nnre | ⊢ ( 𝑅  ∈  ℕ  →  𝑅  ∈  ℝ ) | 
						
							| 102 |  | nnrp | ⊢ ( ( 𝑁 ‘ 𝑚 )  ∈  ℕ  →  ( 𝑁 ‘ 𝑚 )  ∈  ℝ+ ) | 
						
							| 103 |  | mod0 | ⊢ ( ( 𝑅  ∈  ℝ  ∧  ( 𝑁 ‘ 𝑚 )  ∈  ℝ+ )  →  ( ( 𝑅  mod  ( 𝑁 ‘ 𝑚 ) )  =  0  ↔  ( 𝑅  /  ( 𝑁 ‘ 𝑚 ) )  ∈  ℤ ) ) | 
						
							| 104 | 101 102 103 | syl2an | ⊢ ( ( 𝑅  ∈  ℕ  ∧  ( 𝑁 ‘ 𝑚 )  ∈  ℕ )  →  ( ( 𝑅  mod  ( 𝑁 ‘ 𝑚 ) )  =  0  ↔  ( 𝑅  /  ( 𝑁 ‘ 𝑚 ) )  ∈  ℤ ) ) | 
						
							| 105 | 99 100 104 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( ( 𝑅  mod  ( 𝑁 ‘ 𝑚 ) )  =  0  ↔  ( 𝑅  /  ( 𝑁 ‘ 𝑚 ) )  ∈  ℤ ) ) | 
						
							| 106 | 98 105 | mpbid | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( 𝑅  /  ( 𝑁 ‘ 𝑚 ) )  ∈  ℤ ) | 
						
							| 107 | 96 106 | zmulcld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( ( ( 𝐵 ‘ 𝑚 )  ·  ( 𝑁 ‘ 𝑚 ) )  ·  ( 𝑅  /  ( 𝑁 ‘ 𝑚 ) ) )  ∈  ℤ ) | 
						
							| 108 | 90 107 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( 𝑅  ·  ( 𝐵 ‘ 𝑚 ) )  ∈  ℤ ) | 
						
							| 109 | 79 52 108 | elplyd | ⊢ ( 𝜑  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑚  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) ( ( 𝑅  ·  ( 𝐵 ‘ 𝑚 ) )  ·  ( 𝑧 ↑ 𝑚 ) ) )  ∈  ( Poly ‘ ℤ ) ) | 
						
							| 110 | 77 109 | eqeltrd | ⊢ ( 𝜑  →  ( ( ℂ  ×  { 𝑅 } )  ∘f   ·  𝐹 )  ∈  ( Poly ‘ ℤ ) ) | 
						
							| 111 |  | eldifsn | ⊢ ( 𝐹  ∈  ( ( Poly ‘ ℚ )  ∖  { 0𝑝 } )  ↔  ( 𝐹  ∈  ( Poly ‘ ℚ )  ∧  𝐹  ≠  0𝑝 ) ) | 
						
							| 112 | 2 111 | sylib | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( Poly ‘ ℚ )  ∧  𝐹  ≠  0𝑝 ) ) | 
						
							| 113 | 112 | simprd | ⊢ ( 𝜑  →  𝐹  ≠  0𝑝 ) | 
						
							| 114 |  | oveq1 | ⊢ ( ( ( ℂ  ×  { 𝑅 } )  ∘f   ·  𝐹 )  =  0𝑝  →  ( ( ( ℂ  ×  { 𝑅 } )  ∘f   ·  𝐹 )  ∘f   /  ( ℂ  ×  { 𝑅 } ) )  =  ( 0𝑝  ∘f   /  ( ℂ  ×  { 𝑅 } ) ) ) | 
						
							| 115 | 16 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( 𝐹 ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 116 | 54 | nnne0d | ⊢ ( 𝜑  →  𝑅  ≠  0 ) | 
						
							| 117 | 116 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  𝑅  ≠  0 ) | 
						
							| 118 | 115 56 117 | divcan3d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( ( 𝑅  ·  ( 𝐹 ‘ 𝑧 ) )  /  𝑅 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 119 | 118 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑧  ∈  ℂ  ↦  ( ( 𝑅  ·  ( 𝐹 ‘ 𝑧 ) )  /  𝑅 ) )  =  ( 𝑧  ∈  ℂ  ↦  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 120 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( 𝑅  ·  ( 𝐹 ‘ 𝑧 ) )  ∈  V ) | 
						
							| 121 | 8 120 10 18 13 | offval2 | ⊢ ( 𝜑  →  ( ( ( ℂ  ×  { 𝑅 } )  ∘f   ·  𝐹 )  ∘f   /  ( ℂ  ×  { 𝑅 } ) )  =  ( 𝑧  ∈  ℂ  ↦  ( ( 𝑅  ·  ( 𝐹 ‘ 𝑧 ) )  /  𝑅 ) ) ) | 
						
							| 122 | 119 121 17 | 3eqtr4d | ⊢ ( 𝜑  →  ( ( ( ℂ  ×  { 𝑅 } )  ∘f   ·  𝐹 )  ∘f   /  ( ℂ  ×  { 𝑅 } ) )  =  𝐹 ) | 
						
							| 123 | 55 116 | div0d | ⊢ ( 𝜑  →  ( 0  /  𝑅 )  =  0 ) | 
						
							| 124 | 123 | mpteq2dv | ⊢ ( 𝜑  →  ( 𝑧  ∈  ℂ  ↦  ( 0  /  𝑅 ) )  =  ( 𝑧  ∈  ℂ  ↦  0 ) ) | 
						
							| 125 |  | 0cnd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  0  ∈  ℂ ) | 
						
							| 126 |  | df-0p | ⊢ 0𝑝  =  ( ℂ  ×  { 0 } ) | 
						
							| 127 |  | fconstmpt | ⊢ ( ℂ  ×  { 0 } )  =  ( 𝑧  ∈  ℂ  ↦  0 ) | 
						
							| 128 | 126 127 | eqtri | ⊢ 0𝑝  =  ( 𝑧  ∈  ℂ  ↦  0 ) | 
						
							| 129 | 128 | a1i | ⊢ ( 𝜑  →  0𝑝  =  ( 𝑧  ∈  ℂ  ↦  0 ) ) | 
						
							| 130 | 8 125 10 129 13 | offval2 | ⊢ ( 𝜑  →  ( 0𝑝  ∘f   /  ( ℂ  ×  { 𝑅 } ) )  =  ( 𝑧  ∈  ℂ  ↦  ( 0  /  𝑅 ) ) ) | 
						
							| 131 | 124 130 129 | 3eqtr4d | ⊢ ( 𝜑  →  ( 0𝑝  ∘f   /  ( ℂ  ×  { 𝑅 } ) )  =  0𝑝 ) | 
						
							| 132 | 122 131 | eqeq12d | ⊢ ( 𝜑  →  ( ( ( ( ℂ  ×  { 𝑅 } )  ∘f   ·  𝐹 )  ∘f   /  ( ℂ  ×  { 𝑅 } ) )  =  ( 0𝑝  ∘f   /  ( ℂ  ×  { 𝑅 } ) )  ↔  𝐹  =  0𝑝 ) ) | 
						
							| 133 | 114 132 | imbitrid | ⊢ ( 𝜑  →  ( ( ( ℂ  ×  { 𝑅 } )  ∘f   ·  𝐹 )  =  0𝑝  →  𝐹  =  0𝑝 ) ) | 
						
							| 134 | 133 | necon3d | ⊢ ( 𝜑  →  ( 𝐹  ≠  0𝑝  →  ( ( ℂ  ×  { 𝑅 } )  ∘f   ·  𝐹 )  ≠  0𝑝 ) ) | 
						
							| 135 | 113 134 | mpd | ⊢ ( 𝜑  →  ( ( ℂ  ×  { 𝑅 } )  ∘f   ·  𝐹 )  ≠  0𝑝 ) | 
						
							| 136 |  | eldifsn | ⊢ ( ( ( ℂ  ×  { 𝑅 } )  ∘f   ·  𝐹 )  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  ↔  ( ( ( ℂ  ×  { 𝑅 } )  ∘f   ·  𝐹 )  ∈  ( Poly ‘ ℤ )  ∧  ( ( ℂ  ×  { 𝑅 } )  ∘f   ·  𝐹 )  ≠  0𝑝 ) ) | 
						
							| 137 | 110 135 136 | sylanbrc | ⊢ ( 𝜑  →  ( ( ℂ  ×  { 𝑅 } )  ∘f   ·  𝐹 )  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } ) ) | 
						
							| 138 | 9 | fconst | ⊢ ( ℂ  ×  { 𝑅 } ) : ℂ ⟶ { 𝑅 } | 
						
							| 139 |  | ffn | ⊢ ( ( ℂ  ×  { 𝑅 } ) : ℂ ⟶ { 𝑅 }  →  ( ℂ  ×  { 𝑅 } )  Fn  ℂ ) | 
						
							| 140 | 138 139 | mp1i | ⊢ ( 𝜑  →  ( ℂ  ×  { 𝑅 } )  Fn  ℂ ) | 
						
							| 141 | 16 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  ℂ ) | 
						
							| 142 |  | inidm | ⊢ ( ℂ  ∩  ℂ )  =  ℂ | 
						
							| 143 | 9 | fvconst2 | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ℂ  ×  { 𝑅 } ) ‘ 𝐴 )  =  𝑅 ) | 
						
							| 144 | 143 | adantl | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℂ )  →  ( ( ℂ  ×  { 𝑅 } ) ‘ 𝐴 )  =  𝑅 ) | 
						
							| 145 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℂ )  →  ( 𝐹 ‘ 𝐴 )  =  0 ) | 
						
							| 146 | 140 141 8 8 142 144 145 | ofval | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℂ )  →  ( ( ( ℂ  ×  { 𝑅 } )  ∘f   ·  𝐹 ) ‘ 𝐴 )  =  ( 𝑅  ·  0 ) ) | 
						
							| 147 | 1 146 | mpdan | ⊢ ( 𝜑  →  ( ( ( ℂ  ×  { 𝑅 } )  ∘f   ·  𝐹 ) ‘ 𝐴 )  =  ( 𝑅  ·  0 ) ) | 
						
							| 148 | 55 | mul01d | ⊢ ( 𝜑  →  ( 𝑅  ·  0 )  =  0 ) | 
						
							| 149 | 147 148 | eqtrd | ⊢ ( 𝜑  →  ( ( ( ℂ  ×  { 𝑅 } )  ∘f   ·  𝐹 ) ‘ 𝐴 )  =  0 ) | 
						
							| 150 |  | fveq1 | ⊢ ( 𝑓  =  ( ( ℂ  ×  { 𝑅 } )  ∘f   ·  𝐹 )  →  ( 𝑓 ‘ 𝐴 )  =  ( ( ( ℂ  ×  { 𝑅 } )  ∘f   ·  𝐹 ) ‘ 𝐴 ) ) | 
						
							| 151 | 150 | eqeq1d | ⊢ ( 𝑓  =  ( ( ℂ  ×  { 𝑅 } )  ∘f   ·  𝐹 )  →  ( ( 𝑓 ‘ 𝐴 )  =  0  ↔  ( ( ( ℂ  ×  { 𝑅 } )  ∘f   ·  𝐹 ) ‘ 𝐴 )  =  0 ) ) | 
						
							| 152 | 151 | rspcev | ⊢ ( ( ( ( ℂ  ×  { 𝑅 } )  ∘f   ·  𝐹 )  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  ∧  ( ( ( ℂ  ×  { 𝑅 } )  ∘f   ·  𝐹 ) ‘ 𝐴 )  =  0 )  →  ∃ 𝑓  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } ) ( 𝑓 ‘ 𝐴 )  =  0 ) | 
						
							| 153 | 137 149 152 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑓  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } ) ( 𝑓 ‘ 𝐴 )  =  0 ) | 
						
							| 154 |  | elaa | ⊢ ( 𝐴  ∈  𝔸  ↔  ( 𝐴  ∈  ℂ  ∧  ∃ 𝑓  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } ) ( 𝑓 ‘ 𝐴 )  =  0 ) ) | 
						
							| 155 | 1 153 154 | sylanbrc | ⊢ ( 𝜑  →  𝐴  ∈  𝔸 ) |