Metamath Proof Explorer


Theorem elqs

Description: Membership in a quotient set. (Contributed by NM, 23-Jul-1995)

Ref Expression
Hypothesis elqs.1 𝐵 ∈ V
Assertion elqs ( 𝐵 ∈ ( 𝐴 / 𝑅 ) ↔ ∃ 𝑥𝐴 𝐵 = [ 𝑥 ] 𝑅 )

Proof

Step Hyp Ref Expression
1 elqs.1 𝐵 ∈ V
2 elqsg ( 𝐵 ∈ V → ( 𝐵 ∈ ( 𝐴 / 𝑅 ) ↔ ∃ 𝑥𝐴 𝐵 = [ 𝑥 ] 𝑅 ) )
3 1 2 ax-mp ( 𝐵 ∈ ( 𝐴 / 𝑅 ) ↔ ∃ 𝑥𝐴 𝐵 = [ 𝑥 ] 𝑅 )