Description: Membership in a quotient set. (Contributed by NM, 23-Jul-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elqs.1 | ⊢ 𝐵 ∈ V | |
| Assertion | elqs | ⊢ ( 𝐵 ∈ ( 𝐴 / 𝑅 ) ↔ ∃ 𝑥 ∈ 𝐴 𝐵 = [ 𝑥 ] 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elqs.1 | ⊢ 𝐵 ∈ V | |
| 2 | elqsg | ⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ ( 𝐴 / 𝑅 ) ↔ ∃ 𝑥 ∈ 𝐴 𝐵 = [ 𝑥 ] 𝑅 ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( 𝐵 ∈ ( 𝐴 / 𝑅 ) ↔ ∃ 𝑥 ∈ 𝐴 𝐵 = [ 𝑥 ] 𝑅 ) |