Metamath Proof Explorer


Theorem elqsecl

Description: Membership in a quotient set by an equivalence class according to .~ . (Contributed by Alexander van der Vekens, 12-Apr-2018) (Revised by AV, 30-Apr-2021)

Ref Expression
Assertion elqsecl ( 𝐵𝑋 → ( 𝐵 ∈ ( 𝑊 / ) ↔ ∃ 𝑥𝑊 𝐵 = { 𝑦𝑥 𝑦 } ) )

Proof

Step Hyp Ref Expression
1 elqsg ( 𝐵𝑋 → ( 𝐵 ∈ ( 𝑊 / ) ↔ ∃ 𝑥𝑊 𝐵 = [ 𝑥 ] ) )
2 vex 𝑥 ∈ V
3 dfec2 ( 𝑥 ∈ V → [ 𝑥 ] = { 𝑦𝑥 𝑦 } )
4 2 3 mp1i ( 𝐵𝑋 → [ 𝑥 ] = { 𝑦𝑥 𝑦 } )
5 4 eqeq2d ( 𝐵𝑋 → ( 𝐵 = [ 𝑥 ] 𝐵 = { 𝑦𝑥 𝑦 } ) )
6 5 rexbidv ( 𝐵𝑋 → ( ∃ 𝑥𝑊 𝐵 = [ 𝑥 ] ↔ ∃ 𝑥𝑊 𝐵 = { 𝑦𝑥 𝑦 } ) )
7 1 6 bitrd ( 𝐵𝑋 → ( 𝐵 ∈ ( 𝑊 / ) ↔ ∃ 𝑥𝑊 𝐵 = { 𝑦𝑥 𝑦 } ) )