Description: Membership in a quotient set by an equivalence class according to .~ . (Contributed by Alexander van der Vekens, 12-Apr-2018) (Revised by AV, 30-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | elqsecl | ⊢ ( 𝐵 ∈ 𝑋 → ( 𝐵 ∈ ( 𝑊 / ∼ ) ↔ ∃ 𝑥 ∈ 𝑊 𝐵 = { 𝑦 ∣ 𝑥 ∼ 𝑦 } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elqsg | ⊢ ( 𝐵 ∈ 𝑋 → ( 𝐵 ∈ ( 𝑊 / ∼ ) ↔ ∃ 𝑥 ∈ 𝑊 𝐵 = [ 𝑥 ] ∼ ) ) | |
2 | vex | ⊢ 𝑥 ∈ V | |
3 | dfec2 | ⊢ ( 𝑥 ∈ V → [ 𝑥 ] ∼ = { 𝑦 ∣ 𝑥 ∼ 𝑦 } ) | |
4 | 2 3 | mp1i | ⊢ ( 𝐵 ∈ 𝑋 → [ 𝑥 ] ∼ = { 𝑦 ∣ 𝑥 ∼ 𝑦 } ) |
5 | 4 | eqeq2d | ⊢ ( 𝐵 ∈ 𝑋 → ( 𝐵 = [ 𝑥 ] ∼ ↔ 𝐵 = { 𝑦 ∣ 𝑥 ∼ 𝑦 } ) ) |
6 | 5 | rexbidv | ⊢ ( 𝐵 ∈ 𝑋 → ( ∃ 𝑥 ∈ 𝑊 𝐵 = [ 𝑥 ] ∼ ↔ ∃ 𝑥 ∈ 𝑊 𝐵 = { 𝑦 ∣ 𝑥 ∼ 𝑦 } ) ) |
7 | 1 6 | bitrd | ⊢ ( 𝐵 ∈ 𝑋 → ( 𝐵 ∈ ( 𝑊 / ∼ ) ↔ ∃ 𝑥 ∈ 𝑊 𝐵 = { 𝑦 ∣ 𝑥 ∼ 𝑦 } ) ) |