Metamath Proof Explorer


Theorem elqsi

Description: Membership in a quotient set. (Contributed by NM, 23-Jul-1995)

Ref Expression
Assertion elqsi ( 𝐵 ∈ ( 𝐴 / 𝑅 ) → ∃ 𝑥𝐴 𝐵 = [ 𝑥 ] 𝑅 )

Proof

Step Hyp Ref Expression
1 elqsg ( 𝐵 ∈ ( 𝐴 / 𝑅 ) → ( 𝐵 ∈ ( 𝐴 / 𝑅 ) ↔ ∃ 𝑥𝐴 𝐵 = [ 𝑥 ] 𝑅 ) )
2 1 ibi ( 𝐵 ∈ ( 𝐴 / 𝑅 ) → ∃ 𝑥𝐴 𝐵 = [ 𝑥 ] 𝑅 )