Metamath Proof Explorer


Theorem elqsn0

Description: A quotient set does not contain the empty set. (Contributed by NM, 24-Aug-1995)

Ref Expression
Assertion elqsn0 ( ( dom 𝑅 = 𝐴𝐵 ∈ ( 𝐴 / 𝑅 ) ) → 𝐵 ≠ ∅ )

Proof

Step Hyp Ref Expression
1 eqid ( 𝐴 / 𝑅 ) = ( 𝐴 / 𝑅 )
2 neeq1 ( [ 𝑥 ] 𝑅 = 𝐵 → ( [ 𝑥 ] 𝑅 ≠ ∅ ↔ 𝐵 ≠ ∅ ) )
3 eleq2 ( dom 𝑅 = 𝐴 → ( 𝑥 ∈ dom 𝑅𝑥𝐴 ) )
4 3 biimpar ( ( dom 𝑅 = 𝐴𝑥𝐴 ) → 𝑥 ∈ dom 𝑅 )
5 ecdmn0 ( 𝑥 ∈ dom 𝑅 ↔ [ 𝑥 ] 𝑅 ≠ ∅ )
6 4 5 sylib ( ( dom 𝑅 = 𝐴𝑥𝐴 ) → [ 𝑥 ] 𝑅 ≠ ∅ )
7 1 2 6 ectocld ( ( dom 𝑅 = 𝐴𝐵 ∈ ( 𝐴 / 𝑅 ) ) → 𝐵 ≠ ∅ )