Description: A quotient set does not contain the empty set. (Contributed by NM, 24-Aug-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elqsn0 | ⊢ ( ( dom 𝑅 = 𝐴 ∧ 𝐵 ∈ ( 𝐴 / 𝑅 ) ) → 𝐵 ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( 𝐴 / 𝑅 ) = ( 𝐴 / 𝑅 ) | |
| 2 | neeq1 | ⊢ ( [ 𝑥 ] 𝑅 = 𝐵 → ( [ 𝑥 ] 𝑅 ≠ ∅ ↔ 𝐵 ≠ ∅ ) ) | |
| 3 | eleq2 | ⊢ ( dom 𝑅 = 𝐴 → ( 𝑥 ∈ dom 𝑅 ↔ 𝑥 ∈ 𝐴 ) ) | |
| 4 | 3 | biimpar | ⊢ ( ( dom 𝑅 = 𝐴 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ dom 𝑅 ) |
| 5 | ecdmn0 | ⊢ ( 𝑥 ∈ dom 𝑅 ↔ [ 𝑥 ] 𝑅 ≠ ∅ ) | |
| 6 | 4 5 | sylib | ⊢ ( ( dom 𝑅 = 𝐴 ∧ 𝑥 ∈ 𝐴 ) → [ 𝑥 ] 𝑅 ≠ ∅ ) |
| 7 | 1 2 6 | ectocld | ⊢ ( ( dom 𝑅 = 𝐴 ∧ 𝐵 ∈ ( 𝐴 / 𝑅 ) ) → 𝐵 ≠ ∅ ) |