Metamath Proof Explorer
		
		
		
		Description:  Value of the quotient topology function.  (Contributed by Mario
       Carneiro, 9-Apr-2015)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | qtoptop.1 | ⊢ 𝑋  =  ∪  𝐽 | 
				
					|  | Assertion | elqtop2 | ⊢  ( ( 𝐽  ∈  𝑉  ∧  𝐹 : 𝑋 –onto→ 𝑌 )  →  ( 𝐴  ∈  ( 𝐽  qTop  𝐹 )  ↔  ( 𝐴  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝐴 )  ∈  𝐽 ) ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qtoptop.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | ssid | ⊢ 𝑋  ⊆  𝑋 | 
						
							| 3 | 1 | elqtop | ⊢ ( ( 𝐽  ∈  𝑉  ∧  𝐹 : 𝑋 –onto→ 𝑌  ∧  𝑋  ⊆  𝑋 )  →  ( 𝐴  ∈  ( 𝐽  qTop  𝐹 )  ↔  ( 𝐴  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝐴 )  ∈  𝐽 ) ) ) | 
						
							| 4 | 2 3 | mp3an3 | ⊢ ( ( 𝐽  ∈  𝑉  ∧  𝐹 : 𝑋 –onto→ 𝑌 )  →  ( 𝐴  ∈  ( 𝐽  qTop  𝐹 )  ↔  ( 𝐴  ⊆  𝑌  ∧  ( ◡ 𝐹  “  𝐴 )  ∈  𝐽 ) ) ) |