Metamath Proof Explorer
Description: Membership in a restricted class abstraction, using implicit
substitution. (Contributed by NM, 2-Nov-2006)
|
|
Ref |
Expression |
|
Hypotheses |
elrab2.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
|
|
elrab2.2 |
⊢ 𝐶 = { 𝑥 ∈ 𝐵 ∣ 𝜑 } |
|
Assertion |
elrab2 |
⊢ ( 𝐴 ∈ 𝐶 ↔ ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
elrab2.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
elrab2.2 |
⊢ 𝐶 = { 𝑥 ∈ 𝐵 ∣ 𝜑 } |
3 |
2
|
eleq2i |
⊢ ( 𝐴 ∈ 𝐶 ↔ 𝐴 ∈ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ) |
4 |
1
|
elrab |
⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ↔ ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) ) |
5 |
3 4
|
bitri |
⊢ ( 𝐴 ∈ 𝐶 ↔ ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) ) |