Metamath Proof Explorer


Theorem elrab3

Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006)

Ref Expression
Hypothesis elrab.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion elrab3 ( 𝐴𝐵 → ( 𝐴 ∈ { 𝑥𝐵𝜑 } ↔ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 elrab.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 1 elrab ( 𝐴 ∈ { 𝑥𝐵𝜑 } ↔ ( 𝐴𝐵𝜓 ) )
3 2 baib ( 𝐴𝐵 → ( 𝐴 ∈ { 𝑥𝐵𝜑 } ↔ 𝜓 ) )