Metamath Proof Explorer
Description: Membership in a restricted class abstraction, using implicit
substitution. (Contributed by NM, 5-Oct-2006)
|
|
Ref |
Expression |
|
Hypothesis |
elrab.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
|
Assertion |
elrab3 |
⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ↔ 𝜓 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elrab.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
1
|
elrab |
⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ↔ ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) ) |
| 3 |
2
|
baib |
⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ↔ 𝜓 ) ) |