| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-rab | ⊢ { 𝑥  ∈  𝐵  ∣  𝜑 }  =  { 𝑥  ∣  ( 𝑥  ∈  𝐵  ∧  𝜑 ) } | 
						
							| 2 | 1 | eleq2i | ⊢ ( 𝐴  ∈  { 𝑥  ∈  𝐵  ∣  𝜑 }  ↔  𝐴  ∈  { 𝑥  ∣  ( 𝑥  ∈  𝐵  ∧  𝜑 ) } ) | 
						
							| 3 |  | id | ⊢ ( 𝐴  ∈  𝐵  →  𝐴  ∈  𝐵 ) | 
						
							| 4 |  | nfa1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 5 |  | nfv | ⊢ Ⅎ 𝑥 𝐴  ∈  𝐵 | 
						
							| 6 | 4 5 | nfan | ⊢ Ⅎ 𝑥 ( ∀ 𝑥 ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) )  ∧  𝐴  ∈  𝐵 ) | 
						
							| 7 |  | sp | ⊢ ( ∀ 𝑥 ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) )  →  ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) ) ) | 
						
							| 8 |  | eleq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ∈  𝐵  ↔  𝐴  ∈  𝐵 ) ) | 
						
							| 9 | 8 | biimparc | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝑥  =  𝐴 )  →  𝑥  ∈  𝐵 ) | 
						
							| 10 | 9 | biantrurd | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝑥  =  𝐴 )  →  ( 𝜑  ↔  ( 𝑥  ∈  𝐵  ∧  𝜑 ) ) ) | 
						
							| 11 | 10 | bibi1d | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝑥  =  𝐴 )  →  ( ( 𝜑  ↔  𝜓 )  ↔  ( ( 𝑥  ∈  𝐵  ∧  𝜑 )  ↔  𝜓 ) ) ) | 
						
							| 12 | 11 | pm5.74da | ⊢ ( 𝐴  ∈  𝐵  →  ( ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) )  ↔  ( 𝑥  =  𝐴  →  ( ( 𝑥  ∈  𝐵  ∧  𝜑 )  ↔  𝜓 ) ) ) ) | 
						
							| 13 | 7 12 | syl5ibcom | ⊢ ( ∀ 𝑥 ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) )  →  ( 𝐴  ∈  𝐵  →  ( 𝑥  =  𝐴  →  ( ( 𝑥  ∈  𝐵  ∧  𝜑 )  ↔  𝜓 ) ) ) ) | 
						
							| 14 | 13 | imp | ⊢ ( ( ∀ 𝑥 ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) )  ∧  𝐴  ∈  𝐵 )  →  ( 𝑥  =  𝐴  →  ( ( 𝑥  ∈  𝐵  ∧  𝜑 )  ↔  𝜓 ) ) ) | 
						
							| 15 | 6 14 | alrimi | ⊢ ( ( ∀ 𝑥 ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) )  ∧  𝐴  ∈  𝐵 )  →  ∀ 𝑥 ( 𝑥  =  𝐴  →  ( ( 𝑥  ∈  𝐵  ∧  𝜑 )  ↔  𝜓 ) ) ) | 
						
							| 16 |  | elabgt | ⊢ ( ( 𝐴  ∈  𝐵  ∧  ∀ 𝑥 ( 𝑥  =  𝐴  →  ( ( 𝑥  ∈  𝐵  ∧  𝜑 )  ↔  𝜓 ) ) )  →  ( 𝐴  ∈  { 𝑥  ∣  ( 𝑥  ∈  𝐵  ∧  𝜑 ) }  ↔  𝜓 ) ) | 
						
							| 17 | 3 15 16 | syl2an2 | ⊢ ( ( ∀ 𝑥 ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) )  ∧  𝐴  ∈  𝐵 )  →  ( 𝐴  ∈  { 𝑥  ∣  ( 𝑥  ∈  𝐵  ∧  𝜑 ) }  ↔  𝜓 ) ) | 
						
							| 18 | 2 17 | bitrid | ⊢ ( ( ∀ 𝑥 ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) )  ∧  𝐴  ∈  𝐵 )  →  ( 𝐴  ∈  { 𝑥  ∈  𝐵  ∣  𝜑 }  ↔  𝜓 ) ) |