Step |
Hyp |
Ref |
Expression |
1 |
|
df-rab |
⊢ { 𝑥 ∈ 𝐵 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } |
2 |
1
|
eleq2i |
⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ↔ 𝐴 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } ) |
3 |
|
id |
⊢ ( 𝐴 ∈ 𝐵 → 𝐴 ∈ 𝐵 ) |
4 |
|
nfa1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
5 |
|
nfv |
⊢ Ⅎ 𝑥 𝐴 ∈ 𝐵 |
6 |
4 5
|
nfan |
⊢ Ⅎ 𝑥 ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ∧ 𝐴 ∈ 𝐵 ) |
7 |
|
sp |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) |
8 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) |
9 |
8
|
biimparc |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝑥 = 𝐴 ) → 𝑥 ∈ 𝐵 ) |
10 |
9
|
biantrurd |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝑥 = 𝐴 ) → ( 𝜑 ↔ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ) |
11 |
10
|
bibi1d |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝑥 = 𝐴 ) → ( ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ↔ 𝜓 ) ) ) |
12 |
11
|
pm5.74da |
⊢ ( 𝐴 ∈ 𝐵 → ( ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ↔ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ↔ 𝜓 ) ) ) ) |
13 |
7 12
|
syl5ibcom |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( 𝐴 ∈ 𝐵 → ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ↔ 𝜓 ) ) ) ) |
14 |
13
|
imp |
⊢ ( ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ∧ 𝐴 ∈ 𝐵 ) → ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ↔ 𝜓 ) ) ) |
15 |
6 14
|
alrimi |
⊢ ( ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ∧ 𝐴 ∈ 𝐵 ) → ∀ 𝑥 ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ↔ 𝜓 ) ) ) |
16 |
|
elabgt |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ↔ 𝜓 ) ) ) → ( 𝐴 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } ↔ 𝜓 ) ) |
17 |
3 15 16
|
syl2an2 |
⊢ ( ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } ↔ 𝜓 ) ) |
18 |
2 17
|
bitrid |
⊢ ( ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 ∈ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ↔ 𝜓 ) ) |