Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
elrabd
Metamath Proof Explorer
Description: Membership in a restricted class abstraction, using implicit
substitution. Deduction version of elrab . (Contributed by Glauco
Siliprandi , 23-Oct-2021)
Ref
Expression
Hypotheses
elrabd.1
⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜒 ) )
elrabd.2
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 )
elrabd.3
⊢ ( 𝜑 → 𝜒 )
Assertion
elrabd
⊢ ( 𝜑 → 𝐴 ∈ { 𝑥 ∈ 𝐵 ∣ 𝜓 } )
Proof
Step
Hyp
Ref
Expression
1
elrabd.1
⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜒 ) )
2
elrabd.2
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 )
3
elrabd.3
⊢ ( 𝜑 → 𝜒 )
4
1
elrab
⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝐵 ∣ 𝜓 } ↔ ( 𝐴 ∈ 𝐵 ∧ 𝜒 ) )
5
2 3 4
sylanbrc
⊢ ( 𝜑 → 𝐴 ∈ { 𝑥 ∈ 𝐵 ∣ 𝜓 } )