Metamath Proof Explorer


Theorem elrabd

Description: Membership in a restricted class abstraction, using implicit substitution. Deduction version of elrab . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses elrabd.1 ( 𝑥 = 𝐴 → ( 𝜓𝜒 ) )
elrabd.2 ( 𝜑𝐴𝐵 )
elrabd.3 ( 𝜑𝜒 )
Assertion elrabd ( 𝜑𝐴 ∈ { 𝑥𝐵𝜓 } )

Proof

Step Hyp Ref Expression
1 elrabd.1 ( 𝑥 = 𝐴 → ( 𝜓𝜒 ) )
2 elrabd.2 ( 𝜑𝐴𝐵 )
3 elrabd.3 ( 𝜑𝜒 )
4 1 elrab ( 𝐴 ∈ { 𝑥𝐵𝜓 } ↔ ( 𝐴𝐵𝜒 ) )
5 2 3 4 sylanbrc ( 𝜑𝐴 ∈ { 𝑥𝐵𝜓 } )