Metamath Proof Explorer


Theorem elrabi

Description: Implication for the membership in a restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017) Remove disjoint variable condition on A , x and avoid ax-10 , ax-11 , ax-12 . (Revised by SN, 5-Aug-2024)

Ref Expression
Assertion elrabi ( 𝐴 ∈ { 𝑥𝑉𝜑 } → 𝐴𝑉 )

Proof

Step Hyp Ref Expression
1 dfclel ( 𝐴 ∈ { 𝑥 ∣ ( 𝑥𝑉𝜑 ) } ↔ ∃ 𝑦 ( 𝑦 = 𝐴𝑦 ∈ { 𝑥 ∣ ( 𝑥𝑉𝜑 ) } ) )
2 df-clab ( 𝑦 ∈ { 𝑥 ∣ ( 𝑥𝑉𝜑 ) } ↔ [ 𝑦 / 𝑥 ] ( 𝑥𝑉𝜑 ) )
3 simpl ( ( 𝑥𝑉𝜑 ) → 𝑥𝑉 )
4 3 sbimi ( [ 𝑦 / 𝑥 ] ( 𝑥𝑉𝜑 ) → [ 𝑦 / 𝑥 ] 𝑥𝑉 )
5 clelsb3 ( [ 𝑦 / 𝑥 ] 𝑥𝑉𝑦𝑉 )
6 4 5 sylib ( [ 𝑦 / 𝑥 ] ( 𝑥𝑉𝜑 ) → 𝑦𝑉 )
7 2 6 sylbi ( 𝑦 ∈ { 𝑥 ∣ ( 𝑥𝑉𝜑 ) } → 𝑦𝑉 )
8 eleq1 ( 𝑦 = 𝐴 → ( 𝑦𝑉𝐴𝑉 ) )
9 8 biimpa ( ( 𝑦 = 𝐴𝑦𝑉 ) → 𝐴𝑉 )
10 7 9 sylan2 ( ( 𝑦 = 𝐴𝑦 ∈ { 𝑥 ∣ ( 𝑥𝑉𝜑 ) } ) → 𝐴𝑉 )
11 10 exlimiv ( ∃ 𝑦 ( 𝑦 = 𝐴𝑦 ∈ { 𝑥 ∣ ( 𝑥𝑉𝜑 ) } ) → 𝐴𝑉 )
12 1 11 sylbi ( 𝐴 ∈ { 𝑥 ∣ ( 𝑥𝑉𝜑 ) } → 𝐴𝑉 )
13 df-rab { 𝑥𝑉𝜑 } = { 𝑥 ∣ ( 𝑥𝑉𝜑 ) }
14 12 13 eleq2s ( 𝐴 ∈ { 𝑥𝑉𝜑 } → 𝐴𝑉 )