Step |
Hyp |
Ref |
Expression |
1 |
|
dfclel |
⊢ ( 𝐴 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) } ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) } ) ) |
2 |
|
df-clab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) } ↔ [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) ) |
3 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) → 𝑥 ∈ 𝑉 ) |
4 |
3
|
sbimi |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) → [ 𝑦 / 𝑥 ] 𝑥 ∈ 𝑉 ) |
5 |
|
clelsb3 |
⊢ ( [ 𝑦 / 𝑥 ] 𝑥 ∈ 𝑉 ↔ 𝑦 ∈ 𝑉 ) |
6 |
4 5
|
sylib |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) → 𝑦 ∈ 𝑉 ) |
7 |
2 6
|
sylbi |
⊢ ( 𝑦 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) } → 𝑦 ∈ 𝑉 ) |
8 |
|
eleq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ 𝑉 ↔ 𝐴 ∈ 𝑉 ) ) |
9 |
8
|
biimpa |
⊢ ( ( 𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉 ) → 𝐴 ∈ 𝑉 ) |
10 |
7 9
|
sylan2 |
⊢ ( ( 𝑦 = 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) } ) → 𝐴 ∈ 𝑉 ) |
11 |
10
|
exlimiv |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) } ) → 𝐴 ∈ 𝑉 ) |
12 |
1 11
|
sylbi |
⊢ ( 𝐴 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) } → 𝐴 ∈ 𝑉 ) |
13 |
|
df-rab |
⊢ { 𝑥 ∈ 𝑉 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) } |
14 |
12 13
|
eleq2s |
⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝑉 ∣ 𝜑 } → 𝐴 ∈ 𝑉 ) |