Metamath Proof Explorer


Theorem elreal

Description: Membership in class of real numbers. (Contributed by NM, 31-Mar-1996) (New usage is discouraged.)

Ref Expression
Assertion elreal ( 𝐴 ∈ ℝ ↔ ∃ 𝑥R𝑥 , 0R ⟩ = 𝐴 )

Proof

Step Hyp Ref Expression
1 df-r ℝ = ( R × { 0R } )
2 1 eleq2i ( 𝐴 ∈ ℝ ↔ 𝐴 ∈ ( R × { 0R } ) )
3 elxp2 ( 𝐴 ∈ ( R × { 0R } ) ↔ ∃ 𝑥R𝑦 ∈ { 0R } 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ )
4 0r 0RR
5 4 elexi 0R ∈ V
6 opeq2 ( 𝑦 = 0R → ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑥 , 0R ⟩ )
7 6 eqeq2d ( 𝑦 = 0R → ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ↔ 𝐴 = ⟨ 𝑥 , 0R ⟩ ) )
8 5 7 rexsn ( ∃ 𝑦 ∈ { 0R } 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ↔ 𝐴 = ⟨ 𝑥 , 0R ⟩ )
9 eqcom ( 𝐴 = ⟨ 𝑥 , 0R ⟩ ↔ ⟨ 𝑥 , 0R ⟩ = 𝐴 )
10 8 9 bitri ( ∃ 𝑦 ∈ { 0R } 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ↔ ⟨ 𝑥 , 0R ⟩ = 𝐴 )
11 10 rexbii ( ∃ 𝑥R𝑦 ∈ { 0R } 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ↔ ∃ 𝑥R𝑥 , 0R ⟩ = 𝐴 )
12 3 11 bitri ( 𝐴 ∈ ( R × { 0R } ) ↔ ∃ 𝑥R𝑥 , 0R ⟩ = 𝐴 )
13 2 12 bitri ( 𝐴 ∈ ℝ ↔ ∃ 𝑥R𝑥 , 0R ⟩ = 𝐴 )