| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dfrefrels2 | 
							⊢  RefRels   =  { 𝑟  ∈   Rels   ∣  (  I   ∩  ( dom  𝑟  ×  ran  𝑟 ) )  ⊆  𝑟 }  | 
						
						
							| 2 | 
							
								
							 | 
							dmeq | 
							⊢ ( 𝑟  =  𝑅  →  dom  𝑟  =  dom  𝑅 )  | 
						
						
							| 3 | 
							
								
							 | 
							rneq | 
							⊢ ( 𝑟  =  𝑅  →  ran  𝑟  =  ran  𝑅 )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							xpeq12d | 
							⊢ ( 𝑟  =  𝑅  →  ( dom  𝑟  ×  ran  𝑟 )  =  ( dom  𝑅  ×  ran  𝑅 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							ineq2d | 
							⊢ ( 𝑟  =  𝑅  →  (  I   ∩  ( dom  𝑟  ×  ran  𝑟 ) )  =  (  I   ∩  ( dom  𝑅  ×  ran  𝑅 ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							id | 
							⊢ ( 𝑟  =  𝑅  →  𝑟  =  𝑅 )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							sseq12d | 
							⊢ ( 𝑟  =  𝑅  →  ( (  I   ∩  ( dom  𝑟  ×  ran  𝑟 ) )  ⊆  𝑟  ↔  (  I   ∩  ( dom  𝑅  ×  ran  𝑅 ) )  ⊆  𝑅 ) )  | 
						
						
							| 8 | 
							
								1 7
							 | 
							rabeqel | 
							⊢ ( 𝑅  ∈   RefRels   ↔  ( (  I   ∩  ( dom  𝑅  ×  ran  𝑅 ) )  ⊆  𝑅  ∧  𝑅  ∈   Rels  ) )  |