Description: For sets, being an element of the class of reflexive relations ( df-refrels ) is equivalent to satisfying the reflexive relation predicate. (Contributed by Peter Mazsa, 25-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elrefrelsrel | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ∈ RefRels ↔ RefRel 𝑅 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elrelsrel | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ∈ Rels ↔ Rel 𝑅 ) ) | |
| 2 | 1 | anbi2d | ⊢ ( 𝑅 ∈ 𝑉 → ( ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ∧ 𝑅 ∈ Rels ) ↔ ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ∧ Rel 𝑅 ) ) ) | 
| 3 | elrefrels2 | ⊢ ( 𝑅 ∈ RefRels ↔ ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ∧ 𝑅 ∈ Rels ) ) | |
| 4 | dfrefrel2 | ⊢ ( RefRel 𝑅 ↔ ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ∧ Rel 𝑅 ) ) | |
| 5 | 2 3 4 | 3bitr4g | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ∈ RefRels ↔ RefRel 𝑅 ) ) |