Description: The predicate "is a nonnegative real". (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 18-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | elrege0 | ⊢ ( 𝐴 ∈ ( 0 [,) +∞ ) ↔ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re | ⊢ 0 ∈ ℝ | |
2 | elicopnf | ⊢ ( 0 ∈ ℝ → ( 𝐴 ∈ ( 0 [,) +∞ ) ↔ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ) | |
3 | 1 2 | ax-mp | ⊢ ( 𝐴 ∈ ( 0 [,) +∞ ) ↔ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) |