Metamath Proof Explorer


Theorem elrege0

Description: The predicate "is a nonnegative real". (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 18-Jun-2014)

Ref Expression
Assertion elrege0 ( 𝐴 ∈ ( 0 [,) +∞ ) ↔ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 0re 0 ∈ ℝ
2 elicopnf ( 0 ∈ ℝ → ( 𝐴 ∈ ( 0 [,) +∞ ) ↔ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) )
3 1 2 ax-mp ( 𝐴 ∈ ( 0 [,) +∞ ) ↔ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) )