Description: A member of a relation is an ordered pair. (Contributed by NM, 17-Sep-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | elrel | ⊢ ( ( Rel 𝑅 ∧ 𝐴 ∈ 𝑅 ) → ∃ 𝑥 ∃ 𝑦 𝐴 = 〈 𝑥 , 𝑦 〉 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel | ⊢ ( Rel 𝑅 ↔ 𝑅 ⊆ ( V × V ) ) | |
2 | 1 | biimpi | ⊢ ( Rel 𝑅 → 𝑅 ⊆ ( V × V ) ) |
3 | 2 | sselda | ⊢ ( ( Rel 𝑅 ∧ 𝐴 ∈ 𝑅 ) → 𝐴 ∈ ( V × V ) ) |
4 | elvv | ⊢ ( 𝐴 ∈ ( V × V ) ↔ ∃ 𝑥 ∃ 𝑦 𝐴 = 〈 𝑥 , 𝑦 〉 ) | |
5 | 3 4 | sylib | ⊢ ( ( Rel 𝑅 ∧ 𝐴 ∈ 𝑅 ) → ∃ 𝑥 ∃ 𝑦 𝐴 = 〈 𝑥 , 𝑦 〉 ) |