Description: A member of a relation is an ordered pair. (Contributed by NM, 17-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elrel | ⊢ ( ( Rel 𝑅 ∧ 𝐴 ∈ 𝑅 ) → ∃ 𝑥 ∃ 𝑦 𝐴 = 〈 𝑥 , 𝑦 〉 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-rel | ⊢ ( Rel 𝑅 ↔ 𝑅 ⊆ ( V × V ) ) | |
| 2 | 1 | biimpi | ⊢ ( Rel 𝑅 → 𝑅 ⊆ ( V × V ) ) | 
| 3 | 2 | sselda | ⊢ ( ( Rel 𝑅 ∧ 𝐴 ∈ 𝑅 ) → 𝐴 ∈ ( V × V ) ) | 
| 4 | elvv | ⊢ ( 𝐴 ∈ ( V × V ) ↔ ∃ 𝑥 ∃ 𝑦 𝐴 = 〈 𝑥 , 𝑦 〉 ) | |
| 5 | 3 4 | sylib | ⊢ ( ( Rel 𝑅 ∧ 𝐴 ∈ 𝑅 ) → ∃ 𝑥 ∃ 𝑦 𝐴 = 〈 𝑥 , 𝑦 〉 ) |