Metamath Proof Explorer


Theorem elreldm

Description: The first member of an ordered pair in a relation belongs to the domain of the relation (see op1stb ). (Contributed by NM, 28-Jul-2004)

Ref Expression
Assertion elreldm ( ( Rel 𝐴𝐵𝐴 ) → 𝐵 ∈ dom 𝐴 )

Proof

Step Hyp Ref Expression
1 df-rel ( Rel 𝐴𝐴 ⊆ ( V × V ) )
2 ssel ( 𝐴 ⊆ ( V × V ) → ( 𝐵𝐴𝐵 ∈ ( V × V ) ) )
3 1 2 sylbi ( Rel 𝐴 → ( 𝐵𝐴𝐵 ∈ ( V × V ) ) )
4 elvv ( 𝐵 ∈ ( V × V ) ↔ ∃ 𝑥𝑦 𝐵 = ⟨ 𝑥 , 𝑦 ⟩ )
5 3 4 syl6ib ( Rel 𝐴 → ( 𝐵𝐴 → ∃ 𝑥𝑦 𝐵 = ⟨ 𝑥 , 𝑦 ⟩ ) )
6 eleq1 ( 𝐵 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝐵𝐴 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ) )
7 vex 𝑥 ∈ V
8 vex 𝑦 ∈ V
9 7 8 opeldm ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴𝑥 ∈ dom 𝐴 )
10 6 9 syl6bi ( 𝐵 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝐵𝐴𝑥 ∈ dom 𝐴 ) )
11 inteq ( 𝐵 = ⟨ 𝑥 , 𝑦 ⟩ → 𝐵 = 𝑥 , 𝑦 ⟩ )
12 11 inteqd ( 𝐵 = ⟨ 𝑥 , 𝑦 ⟩ → 𝐵 = 𝑥 , 𝑦 ⟩ )
13 7 8 op1stb 𝑥 , 𝑦 ⟩ = 𝑥
14 12 13 eqtrdi ( 𝐵 = ⟨ 𝑥 , 𝑦 ⟩ → 𝐵 = 𝑥 )
15 14 eleq1d ( 𝐵 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝐵 ∈ dom 𝐴𝑥 ∈ dom 𝐴 ) )
16 10 15 sylibrd ( 𝐵 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝐵𝐴 𝐵 ∈ dom 𝐴 ) )
17 16 exlimivv ( ∃ 𝑥𝑦 𝐵 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝐵𝐴 𝐵 ∈ dom 𝐴 ) )
18 5 17 syli ( Rel 𝐴 → ( 𝐵𝐴 𝐵 ∈ dom 𝐴 ) )
19 18 imp ( ( Rel 𝐴𝐵𝐴 ) → 𝐵 ∈ dom 𝐴 )