Metamath Proof Explorer


Theorem elrelimasn

Description: Elementhood in the image of a singleton. (Contributed by Mario Carneiro, 3-Nov-2015)

Ref Expression
Assertion elrelimasn ( Rel 𝑅 → ( 𝐵 ∈ ( 𝑅 “ { 𝐴 } ) ↔ 𝐴 𝑅 𝐵 ) )

Proof

Step Hyp Ref Expression
1 relimasn ( Rel 𝑅 → ( 𝑅 “ { 𝐴 } ) = { 𝑥𝐴 𝑅 𝑥 } )
2 1 eleq2d ( Rel 𝑅 → ( 𝐵 ∈ ( 𝑅 “ { 𝐴 } ) ↔ 𝐵 ∈ { 𝑥𝐴 𝑅 𝑥 } ) )
3 brrelex2 ( ( Rel 𝑅𝐴 𝑅 𝐵 ) → 𝐵 ∈ V )
4 3 ex ( Rel 𝑅 → ( 𝐴 𝑅 𝐵𝐵 ∈ V ) )
5 breq2 ( 𝑥 = 𝐵 → ( 𝐴 𝑅 𝑥𝐴 𝑅 𝐵 ) )
6 5 elab3g ( ( 𝐴 𝑅 𝐵𝐵 ∈ V ) → ( 𝐵 ∈ { 𝑥𝐴 𝑅 𝑥 } ↔ 𝐴 𝑅 𝐵 ) )
7 4 6 syl ( Rel 𝑅 → ( 𝐵 ∈ { 𝑥𝐴 𝑅 𝑥 } ↔ 𝐴 𝑅 𝐵 ) )
8 2 7 bitrd ( Rel 𝑅 → ( 𝐵 ∈ ( 𝑅 “ { 𝐴 } ) ↔ 𝐴 𝑅 𝐵 ) )