Description: Elementhood in the image of a singleton. (Contributed by Mario Carneiro, 3-Nov-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elrelimasn | ⊢ ( Rel 𝑅 → ( 𝐵 ∈ ( 𝑅 “ { 𝐴 } ) ↔ 𝐴 𝑅 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relimasn | ⊢ ( Rel 𝑅 → ( 𝑅 “ { 𝐴 } ) = { 𝑥 ∣ 𝐴 𝑅 𝑥 } ) | |
| 2 | 1 | eleq2d | ⊢ ( Rel 𝑅 → ( 𝐵 ∈ ( 𝑅 “ { 𝐴 } ) ↔ 𝐵 ∈ { 𝑥 ∣ 𝐴 𝑅 𝑥 } ) ) |
| 3 | brrelex2 | ⊢ ( ( Rel 𝑅 ∧ 𝐴 𝑅 𝐵 ) → 𝐵 ∈ V ) | |
| 4 | 3 | ex | ⊢ ( Rel 𝑅 → ( 𝐴 𝑅 𝐵 → 𝐵 ∈ V ) ) |
| 5 | breq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 𝑅 𝑥 ↔ 𝐴 𝑅 𝐵 ) ) | |
| 6 | 5 | elab3g | ⊢ ( ( 𝐴 𝑅 𝐵 → 𝐵 ∈ V ) → ( 𝐵 ∈ { 𝑥 ∣ 𝐴 𝑅 𝑥 } ↔ 𝐴 𝑅 𝐵 ) ) |
| 7 | 4 6 | syl | ⊢ ( Rel 𝑅 → ( 𝐵 ∈ { 𝑥 ∣ 𝐴 𝑅 𝑥 } ↔ 𝐴 𝑅 𝐵 ) ) |
| 8 | 2 7 | bitrd | ⊢ ( Rel 𝑅 → ( 𝐵 ∈ ( 𝑅 “ { 𝐴 } ) ↔ 𝐴 𝑅 𝐵 ) ) |