| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cnvsym | 
							⊢ ( ◡ 𝑅  ⊆  𝑅  ↔  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦  →  𝑦 𝑅 𝑥 ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							a1i | 
							⊢ ( 𝑅  ∈   Rels   →  ( ◡ 𝑅  ⊆  𝑅  ↔  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦  →  𝑦 𝑅 𝑥 ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							elrelsrelim | 
							⊢ ( 𝑅  ∈   Rels   →  Rel  𝑅 )  | 
						
						
							| 4 | 
							
								
							 | 
							dfrel2 | 
							⊢ ( Rel  𝑅  ↔  ◡ ◡ 𝑅  =  𝑅 )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							sylib | 
							⊢ ( 𝑅  ∈   Rels   →  ◡ ◡ 𝑅  =  𝑅 )  | 
						
						
							| 6 | 
							
								5
							 | 
							sseq1d | 
							⊢ ( 𝑅  ∈   Rels   →  ( ◡ ◡ 𝑅  ⊆  ◡ 𝑅  ↔  𝑅  ⊆  ◡ 𝑅 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							cnvsym | 
							⊢ ( ◡ ◡ 𝑅  ⊆  ◡ 𝑅  ↔  ∀ 𝑥 ∀ 𝑦 ( 𝑥 ◡ 𝑅 𝑦  →  𝑦 ◡ 𝑅 𝑥 ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							bitr3di | 
							⊢ ( 𝑅  ∈   Rels   →  ( 𝑅  ⊆  ◡ 𝑅  ↔  ∀ 𝑥 ∀ 𝑦 ( 𝑥 ◡ 𝑅 𝑦  →  𝑦 ◡ 𝑅 𝑥 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							relbrcnvg | 
							⊢ ( Rel  𝑅  →  ( 𝑥 ◡ 𝑅 𝑦  ↔  𝑦 𝑅 𝑥 ) )  | 
						
						
							| 10 | 
							
								3 9
							 | 
							syl | 
							⊢ ( 𝑅  ∈   Rels   →  ( 𝑥 ◡ 𝑅 𝑦  ↔  𝑦 𝑅 𝑥 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							relbrcnvg | 
							⊢ ( Rel  𝑅  →  ( 𝑦 ◡ 𝑅 𝑥  ↔  𝑥 𝑅 𝑦 ) )  | 
						
						
							| 12 | 
							
								3 11
							 | 
							syl | 
							⊢ ( 𝑅  ∈   Rels   →  ( 𝑦 ◡ 𝑅 𝑥  ↔  𝑥 𝑅 𝑦 ) )  | 
						
						
							| 13 | 
							
								10 12
							 | 
							imbi12d | 
							⊢ ( 𝑅  ∈   Rels   →  ( ( 𝑥 ◡ 𝑅 𝑦  →  𝑦 ◡ 𝑅 𝑥 )  ↔  ( 𝑦 𝑅 𝑥  →  𝑥 𝑅 𝑦 ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							2albidv | 
							⊢ ( 𝑅  ∈   Rels   →  ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 ◡ 𝑅 𝑦  →  𝑦 ◡ 𝑅 𝑥 )  ↔  ∀ 𝑥 ∀ 𝑦 ( 𝑦 𝑅 𝑥  →  𝑥 𝑅 𝑦 ) ) )  | 
						
						
							| 15 | 
							
								8 14
							 | 
							bitrd | 
							⊢ ( 𝑅  ∈   Rels   →  ( 𝑅  ⊆  ◡ 𝑅  ↔  ∀ 𝑥 ∀ 𝑦 ( 𝑦 𝑅 𝑥  →  𝑥 𝑅 𝑦 ) ) )  | 
						
						
							| 16 | 
							
								2 15
							 | 
							anbi12d | 
							⊢ ( 𝑅  ∈   Rels   →  ( ( ◡ 𝑅  ⊆  𝑅  ∧  𝑅  ⊆  ◡ 𝑅 )  ↔  ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦  →  𝑦 𝑅 𝑥 )  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑦 𝑅 𝑥  →  𝑥 𝑅 𝑦 ) ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							eqss | 
							⊢ ( ◡ 𝑅  =  𝑅  ↔  ( ◡ 𝑅  ⊆  𝑅  ∧  𝑅  ⊆  ◡ 𝑅 ) )  | 
						
						
							| 18 | 
							
								
							 | 
							2albiim | 
							⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦  ↔  𝑦 𝑅 𝑥 )  ↔  ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦  →  𝑦 𝑅 𝑥 )  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑦 𝑅 𝑥  →  𝑥 𝑅 𝑦 ) ) )  | 
						
						
							| 19 | 
							
								16 17 18
							 | 
							3bitr4g | 
							⊢ ( 𝑅  ∈   Rels   →  ( ◡ 𝑅  =  𝑅  ↔  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦  ↔  𝑦 𝑅 𝑥 ) ) )  |