Description: The predicate "is an open set of a subspace topology". (Contributed by FL, 5-Jan-2009) (Revised by Mario Carneiro, 15-Dec-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | elrest | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ∈ ( 𝐽 ↾t 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐽 𝐴 = ( 𝑥 ∩ 𝐵 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restval | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐽 ↾t 𝐵 ) = ran ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐵 ) ) ) | |
2 | 1 | eleq2d | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ∈ ( 𝐽 ↾t 𝐵 ) ↔ 𝐴 ∈ ran ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐵 ) ) ) ) |
3 | eqid | ⊢ ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐵 ) ) = ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐵 ) ) | |
4 | vex | ⊢ 𝑥 ∈ V | |
5 | 4 | inex1 | ⊢ ( 𝑥 ∩ 𝐵 ) ∈ V |
6 | 3 5 | elrnmpti | ⊢ ( 𝐴 ∈ ran ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐵 ) ) ↔ ∃ 𝑥 ∈ 𝐽 𝐴 = ( 𝑥 ∩ 𝐵 ) ) |
7 | 2 6 | bitrdi | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ∈ ( 𝐽 ↾t 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐽 𝐴 = ( 𝑥 ∩ 𝐵 ) ) ) |