Description: Sufficient condition for being an open set in a subspace. (Contributed by Jeff Hankins, 11-Jul-2009) (Revised by Mario Carneiro, 15-Dec-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | elrestr | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐴 ∈ 𝐽 ) → ( 𝐴 ∩ 𝑆 ) ∈ ( 𝐽 ↾t 𝑆 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ( 𝐴 ∩ 𝑆 ) = ( 𝐴 ∩ 𝑆 ) | |
2 | ineq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∩ 𝑆 ) = ( 𝐴 ∩ 𝑆 ) ) | |
3 | 2 | rspceeqv | ⊢ ( ( 𝐴 ∈ 𝐽 ∧ ( 𝐴 ∩ 𝑆 ) = ( 𝐴 ∩ 𝑆 ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝐴 ∩ 𝑆 ) = ( 𝑥 ∩ 𝑆 ) ) |
4 | 1 3 | mpan2 | ⊢ ( 𝐴 ∈ 𝐽 → ∃ 𝑥 ∈ 𝐽 ( 𝐴 ∩ 𝑆 ) = ( 𝑥 ∩ 𝑆 ) ) |
5 | elrest | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ) → ( ( 𝐴 ∩ 𝑆 ) ∈ ( 𝐽 ↾t 𝑆 ) ↔ ∃ 𝑥 ∈ 𝐽 ( 𝐴 ∩ 𝑆 ) = ( 𝑥 ∩ 𝑆 ) ) ) | |
6 | 4 5 | syl5ibr | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ) → ( 𝐴 ∈ 𝐽 → ( 𝐴 ∩ 𝑆 ) ∈ ( 𝐽 ↾t 𝑆 ) ) ) |
7 | 6 | 3impia | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐴 ∈ 𝐽 ) → ( 𝐴 ∩ 𝑆 ) ∈ ( 𝐽 ↾t 𝑆 ) ) |