Metamath Proof Explorer


Theorem elrestr

Description: Sufficient condition for being an open set in a subspace. (Contributed by Jeff Hankins, 11-Jul-2009) (Revised by Mario Carneiro, 15-Dec-2013)

Ref Expression
Assertion elrestr ( ( 𝐽𝑉𝑆𝑊𝐴𝐽 ) → ( 𝐴𝑆 ) ∈ ( 𝐽t 𝑆 ) )

Proof

Step Hyp Ref Expression
1 eqid ( 𝐴𝑆 ) = ( 𝐴𝑆 )
2 ineq1 ( 𝑥 = 𝐴 → ( 𝑥𝑆 ) = ( 𝐴𝑆 ) )
3 2 rspceeqv ( ( 𝐴𝐽 ∧ ( 𝐴𝑆 ) = ( 𝐴𝑆 ) ) → ∃ 𝑥𝐽 ( 𝐴𝑆 ) = ( 𝑥𝑆 ) )
4 1 3 mpan2 ( 𝐴𝐽 → ∃ 𝑥𝐽 ( 𝐴𝑆 ) = ( 𝑥𝑆 ) )
5 elrest ( ( 𝐽𝑉𝑆𝑊 ) → ( ( 𝐴𝑆 ) ∈ ( 𝐽t 𝑆 ) ↔ ∃ 𝑥𝐽 ( 𝐴𝑆 ) = ( 𝑥𝑆 ) ) )
6 4 5 syl5ibr ( ( 𝐽𝑉𝑆𝑊 ) → ( 𝐴𝐽 → ( 𝐴𝑆 ) ∈ ( 𝐽t 𝑆 ) ) )
7 6 3impia ( ( 𝐽𝑉𝑆𝑊𝐴𝐽 ) → ( 𝐴𝑆 ) ∈ ( 𝐽t 𝑆 ) )