Step |
Hyp |
Ref |
Expression |
1 |
|
frn |
⊢ ( 𝐹 : 𝐼 ⟶ 𝒫 𝐵 → ran 𝐹 ⊆ 𝒫 𝐵 ) |
2 |
|
elrfi |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ran 𝐹 ⊆ 𝒫 𝐵 ) → ( 𝐴 ∈ ( fi ‘ ( { 𝐵 } ∪ ran 𝐹 ) ) ↔ ∃ 𝑤 ∈ ( 𝒫 ran 𝐹 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑤 ) ) ) |
3 |
1 2
|
sylan2 |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) → ( 𝐴 ∈ ( fi ‘ ( { 𝐵 } ∪ ran 𝐹 ) ) ↔ ∃ 𝑤 ∈ ( 𝒫 ran 𝐹 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑤 ) ) ) |
4 |
|
imassrn |
⊢ ( 𝐹 “ 𝑣 ) ⊆ ran 𝐹 |
5 |
|
pwexg |
⊢ ( 𝐵 ∈ 𝑉 → 𝒫 𝐵 ∈ V ) |
6 |
|
ssexg |
⊢ ( ( ran 𝐹 ⊆ 𝒫 𝐵 ∧ 𝒫 𝐵 ∈ V ) → ran 𝐹 ∈ V ) |
7 |
1 5 6
|
syl2anr |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) → ran 𝐹 ∈ V ) |
8 |
|
elpw2g |
⊢ ( ran 𝐹 ∈ V → ( ( 𝐹 “ 𝑣 ) ∈ 𝒫 ran 𝐹 ↔ ( 𝐹 “ 𝑣 ) ⊆ ran 𝐹 ) ) |
9 |
7 8
|
syl |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) → ( ( 𝐹 “ 𝑣 ) ∈ 𝒫 ran 𝐹 ↔ ( 𝐹 “ 𝑣 ) ⊆ ran 𝐹 ) ) |
10 |
4 9
|
mpbiri |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) → ( 𝐹 “ 𝑣 ) ∈ 𝒫 ran 𝐹 ) |
11 |
10
|
adantr |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) ∧ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) ) → ( 𝐹 “ 𝑣 ) ∈ 𝒫 ran 𝐹 ) |
12 |
|
ffun |
⊢ ( 𝐹 : 𝐼 ⟶ 𝒫 𝐵 → Fun 𝐹 ) |
13 |
12
|
ad2antlr |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) ∧ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) ) → Fun 𝐹 ) |
14 |
|
inss2 |
⊢ ( 𝒫 𝐼 ∩ Fin ) ⊆ Fin |
15 |
14
|
sseli |
⊢ ( 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) → 𝑣 ∈ Fin ) |
16 |
15
|
adantl |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) ∧ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) ) → 𝑣 ∈ Fin ) |
17 |
|
imafi |
⊢ ( ( Fun 𝐹 ∧ 𝑣 ∈ Fin ) → ( 𝐹 “ 𝑣 ) ∈ Fin ) |
18 |
13 16 17
|
syl2anc |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) ∧ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) ) → ( 𝐹 “ 𝑣 ) ∈ Fin ) |
19 |
11 18
|
elind |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) ∧ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) ) → ( 𝐹 “ 𝑣 ) ∈ ( 𝒫 ran 𝐹 ∩ Fin ) ) |
20 |
|
ffn |
⊢ ( 𝐹 : 𝐼 ⟶ 𝒫 𝐵 → 𝐹 Fn 𝐼 ) |
21 |
20
|
ad2antlr |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) ∧ 𝑤 ∈ ( 𝒫 ran 𝐹 ∩ Fin ) ) → 𝐹 Fn 𝐼 ) |
22 |
|
inss1 |
⊢ ( 𝒫 ran 𝐹 ∩ Fin ) ⊆ 𝒫 ran 𝐹 |
23 |
22
|
sseli |
⊢ ( 𝑤 ∈ ( 𝒫 ran 𝐹 ∩ Fin ) → 𝑤 ∈ 𝒫 ran 𝐹 ) |
24 |
23
|
elpwid |
⊢ ( 𝑤 ∈ ( 𝒫 ran 𝐹 ∩ Fin ) → 𝑤 ⊆ ran 𝐹 ) |
25 |
24
|
adantl |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) ∧ 𝑤 ∈ ( 𝒫 ran 𝐹 ∩ Fin ) ) → 𝑤 ⊆ ran 𝐹 ) |
26 |
|
inss2 |
⊢ ( 𝒫 ran 𝐹 ∩ Fin ) ⊆ Fin |
27 |
26
|
sseli |
⊢ ( 𝑤 ∈ ( 𝒫 ran 𝐹 ∩ Fin ) → 𝑤 ∈ Fin ) |
28 |
27
|
adantl |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) ∧ 𝑤 ∈ ( 𝒫 ran 𝐹 ∩ Fin ) ) → 𝑤 ∈ Fin ) |
29 |
|
fipreima |
⊢ ( ( 𝐹 Fn 𝐼 ∧ 𝑤 ⊆ ran 𝐹 ∧ 𝑤 ∈ Fin ) → ∃ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) ( 𝐹 “ 𝑣 ) = 𝑤 ) |
30 |
21 25 28 29
|
syl3anc |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) ∧ 𝑤 ∈ ( 𝒫 ran 𝐹 ∩ Fin ) ) → ∃ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) ( 𝐹 “ 𝑣 ) = 𝑤 ) |
31 |
|
eqcom |
⊢ ( ( 𝐹 “ 𝑣 ) = 𝑤 ↔ 𝑤 = ( 𝐹 “ 𝑣 ) ) |
32 |
31
|
rexbii |
⊢ ( ∃ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) ( 𝐹 “ 𝑣 ) = 𝑤 ↔ ∃ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) 𝑤 = ( 𝐹 “ 𝑣 ) ) |
33 |
30 32
|
sylib |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) ∧ 𝑤 ∈ ( 𝒫 ran 𝐹 ∩ Fin ) ) → ∃ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) 𝑤 = ( 𝐹 “ 𝑣 ) ) |
34 |
|
inteq |
⊢ ( 𝑤 = ( 𝐹 “ 𝑣 ) → ∩ 𝑤 = ∩ ( 𝐹 “ 𝑣 ) ) |
35 |
34
|
ineq2d |
⊢ ( 𝑤 = ( 𝐹 “ 𝑣 ) → ( 𝐵 ∩ ∩ 𝑤 ) = ( 𝐵 ∩ ∩ ( 𝐹 “ 𝑣 ) ) ) |
36 |
35
|
eqeq2d |
⊢ ( 𝑤 = ( 𝐹 “ 𝑣 ) → ( 𝐴 = ( 𝐵 ∩ ∩ 𝑤 ) ↔ 𝐴 = ( 𝐵 ∩ ∩ ( 𝐹 “ 𝑣 ) ) ) ) |
37 |
36
|
adantl |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) ∧ 𝑤 = ( 𝐹 “ 𝑣 ) ) → ( 𝐴 = ( 𝐵 ∩ ∩ 𝑤 ) ↔ 𝐴 = ( 𝐵 ∩ ∩ ( 𝐹 “ 𝑣 ) ) ) ) |
38 |
19 33 37
|
rexxfrd |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) → ( ∃ 𝑤 ∈ ( 𝒫 ran 𝐹 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑤 ) ↔ ∃ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ ( 𝐹 “ 𝑣 ) ) ) ) |
39 |
20
|
ad2antlr |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) ∧ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) ) → 𝐹 Fn 𝐼 ) |
40 |
|
inss1 |
⊢ ( 𝒫 𝐼 ∩ Fin ) ⊆ 𝒫 𝐼 |
41 |
40
|
sseli |
⊢ ( 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) → 𝑣 ∈ 𝒫 𝐼 ) |
42 |
41
|
elpwid |
⊢ ( 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) → 𝑣 ⊆ 𝐼 ) |
43 |
42
|
adantl |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) ∧ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) ) → 𝑣 ⊆ 𝐼 ) |
44 |
|
imaiinfv |
⊢ ( ( 𝐹 Fn 𝐼 ∧ 𝑣 ⊆ 𝐼 ) → ∩ 𝑦 ∈ 𝑣 ( 𝐹 ‘ 𝑦 ) = ∩ ( 𝐹 “ 𝑣 ) ) |
45 |
39 43 44
|
syl2anc |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) ∧ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) ) → ∩ 𝑦 ∈ 𝑣 ( 𝐹 ‘ 𝑦 ) = ∩ ( 𝐹 “ 𝑣 ) ) |
46 |
45
|
eqcomd |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) ∧ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) ) → ∩ ( 𝐹 “ 𝑣 ) = ∩ 𝑦 ∈ 𝑣 ( 𝐹 ‘ 𝑦 ) ) |
47 |
46
|
ineq2d |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) ∧ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) ) → ( 𝐵 ∩ ∩ ( 𝐹 “ 𝑣 ) ) = ( 𝐵 ∩ ∩ 𝑦 ∈ 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) |
48 |
47
|
eqeq2d |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) ∧ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) ) → ( 𝐴 = ( 𝐵 ∩ ∩ ( 𝐹 “ 𝑣 ) ) ↔ 𝐴 = ( 𝐵 ∩ ∩ 𝑦 ∈ 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ) |
49 |
48
|
rexbidva |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) → ( ∃ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ ( 𝐹 “ 𝑣 ) ) ↔ ∃ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑦 ∈ 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ) |
50 |
3 38 49
|
3bitrd |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) → ( 𝐴 ∈ ( fi ‘ ( { 𝐵 } ∪ ran 𝐹 ) ) ↔ ∃ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑦 ∈ 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ) |