Step |
Hyp |
Ref |
Expression |
1 |
|
elpw2g |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐶 ∈ 𝒫 𝐵 ↔ 𝐶 ⊆ 𝐵 ) ) |
2 |
1
|
biimprd |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐶 ⊆ 𝐵 → 𝐶 ∈ 𝒫 𝐵 ) ) |
3 |
2
|
ralimdv |
⊢ ( 𝐵 ∈ 𝑉 → ( ∀ 𝑦 ∈ 𝐼 𝐶 ⊆ 𝐵 → ∀ 𝑦 ∈ 𝐼 𝐶 ∈ 𝒫 𝐵 ) ) |
4 |
3
|
imp |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝐼 𝐶 ⊆ 𝐵 ) → ∀ 𝑦 ∈ 𝐼 𝐶 ∈ 𝒫 𝐵 ) |
5 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) = ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) |
6 |
5
|
fmpt |
⊢ ( ∀ 𝑦 ∈ 𝐼 𝐶 ∈ 𝒫 𝐵 ↔ ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) : 𝐼 ⟶ 𝒫 𝐵 ) |
7 |
4 6
|
sylib |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝐼 𝐶 ⊆ 𝐵 ) → ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) : 𝐼 ⟶ 𝒫 𝐵 ) |
8 |
|
elrfirn |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) : 𝐼 ⟶ 𝒫 𝐵 ) → ( 𝐴 ∈ ( fi ‘ ( { 𝐵 } ∪ ran ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ) ) ↔ ∃ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑧 ∈ 𝑣 ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑧 ) ) ) ) |
9 |
7 8
|
syldan |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝐼 𝐶 ⊆ 𝐵 ) → ( 𝐴 ∈ ( fi ‘ ( { 𝐵 } ∪ ran ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ) ) ↔ ∃ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑧 ∈ 𝑣 ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑧 ) ) ) ) |
10 |
|
inss1 |
⊢ ( 𝒫 𝐼 ∩ Fin ) ⊆ 𝒫 𝐼 |
11 |
10
|
sseli |
⊢ ( 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) → 𝑣 ∈ 𝒫 𝐼 ) |
12 |
11
|
elpwid |
⊢ ( 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) → 𝑣 ⊆ 𝐼 ) |
13 |
|
nffvmpt1 |
⊢ Ⅎ 𝑦 ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑧 ) |
14 |
|
nfcv |
⊢ Ⅎ 𝑧 ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑦 ) |
15 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑧 ) = ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑦 ) ) |
16 |
13 14 15
|
cbviin |
⊢ ∩ 𝑧 ∈ 𝑣 ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑧 ) = ∩ 𝑦 ∈ 𝑣 ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑦 ) |
17 |
|
simplr |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝑦 ∈ 𝐼 ) ∧ 𝐶 ⊆ 𝐵 ) → 𝑦 ∈ 𝐼 ) |
18 |
|
simpll |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝑦 ∈ 𝐼 ) ∧ 𝐶 ⊆ 𝐵 ) → 𝐵 ∈ 𝑉 ) |
19 |
|
simpr |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝑦 ∈ 𝐼 ) ∧ 𝐶 ⊆ 𝐵 ) → 𝐶 ⊆ 𝐵 ) |
20 |
18 19
|
ssexd |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝑦 ∈ 𝐼 ) ∧ 𝐶 ⊆ 𝐵 ) → 𝐶 ∈ V ) |
21 |
5
|
fvmpt2 |
⊢ ( ( 𝑦 ∈ 𝐼 ∧ 𝐶 ∈ V ) → ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑦 ) = 𝐶 ) |
22 |
17 20 21
|
syl2anc |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝑦 ∈ 𝐼 ) ∧ 𝐶 ⊆ 𝐵 ) → ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑦 ) = 𝐶 ) |
23 |
22
|
ex |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑦 ∈ 𝐼 ) → ( 𝐶 ⊆ 𝐵 → ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑦 ) = 𝐶 ) ) |
24 |
23
|
ralimdva |
⊢ ( 𝐵 ∈ 𝑉 → ( ∀ 𝑦 ∈ 𝐼 𝐶 ⊆ 𝐵 → ∀ 𝑦 ∈ 𝐼 ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑦 ) = 𝐶 ) ) |
25 |
24
|
imp |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝐼 𝐶 ⊆ 𝐵 ) → ∀ 𝑦 ∈ 𝐼 ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑦 ) = 𝐶 ) |
26 |
|
ssralv |
⊢ ( 𝑣 ⊆ 𝐼 → ( ∀ 𝑦 ∈ 𝐼 ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑦 ) = 𝐶 → ∀ 𝑦 ∈ 𝑣 ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑦 ) = 𝐶 ) ) |
27 |
25 26
|
mpan9 |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝐼 𝐶 ⊆ 𝐵 ) ∧ 𝑣 ⊆ 𝐼 ) → ∀ 𝑦 ∈ 𝑣 ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑦 ) = 𝐶 ) |
28 |
|
iineq2 |
⊢ ( ∀ 𝑦 ∈ 𝑣 ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑦 ) = 𝐶 → ∩ 𝑦 ∈ 𝑣 ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑦 ) = ∩ 𝑦 ∈ 𝑣 𝐶 ) |
29 |
27 28
|
syl |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝐼 𝐶 ⊆ 𝐵 ) ∧ 𝑣 ⊆ 𝐼 ) → ∩ 𝑦 ∈ 𝑣 ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑦 ) = ∩ 𝑦 ∈ 𝑣 𝐶 ) |
30 |
16 29
|
syl5eq |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝐼 𝐶 ⊆ 𝐵 ) ∧ 𝑣 ⊆ 𝐼 ) → ∩ 𝑧 ∈ 𝑣 ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑧 ) = ∩ 𝑦 ∈ 𝑣 𝐶 ) |
31 |
30
|
ineq2d |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝐼 𝐶 ⊆ 𝐵 ) ∧ 𝑣 ⊆ 𝐼 ) → ( 𝐵 ∩ ∩ 𝑧 ∈ 𝑣 ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑧 ) ) = ( 𝐵 ∩ ∩ 𝑦 ∈ 𝑣 𝐶 ) ) |
32 |
31
|
eqeq2d |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝐼 𝐶 ⊆ 𝐵 ) ∧ 𝑣 ⊆ 𝐼 ) → ( 𝐴 = ( 𝐵 ∩ ∩ 𝑧 ∈ 𝑣 ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑧 ) ) ↔ 𝐴 = ( 𝐵 ∩ ∩ 𝑦 ∈ 𝑣 𝐶 ) ) ) |
33 |
12 32
|
sylan2 |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝐼 𝐶 ⊆ 𝐵 ) ∧ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) ) → ( 𝐴 = ( 𝐵 ∩ ∩ 𝑧 ∈ 𝑣 ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑧 ) ) ↔ 𝐴 = ( 𝐵 ∩ ∩ 𝑦 ∈ 𝑣 𝐶 ) ) ) |
34 |
33
|
rexbidva |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝐼 𝐶 ⊆ 𝐵 ) → ( ∃ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑧 ∈ 𝑣 ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑧 ) ) ↔ ∃ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑦 ∈ 𝑣 𝐶 ) ) ) |
35 |
9 34
|
bitrd |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝐼 𝐶 ⊆ 𝐵 ) → ( 𝐴 ∈ ( fi ‘ ( { 𝐵 } ∪ ran ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ) ) ↔ ∃ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑦 ∈ 𝑣 𝐶 ) ) ) |