Metamath Proof Explorer


Theorem elrfirn2

Description: Elementhood in a set of relative finite intersections of an indexed family of sets (implicit). (Contributed by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Assertion elrfirn2 ( ( 𝐵𝑉 ∧ ∀ 𝑦𝐼 𝐶𝐵 ) → ( 𝐴 ∈ ( fi ‘ ( { 𝐵 } ∪ ran ( 𝑦𝐼𝐶 ) ) ) ↔ ∃ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) 𝐴 = ( 𝐵 𝑦𝑣 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 elpw2g ( 𝐵𝑉 → ( 𝐶 ∈ 𝒫 𝐵𝐶𝐵 ) )
2 1 biimprd ( 𝐵𝑉 → ( 𝐶𝐵𝐶 ∈ 𝒫 𝐵 ) )
3 2 ralimdv ( 𝐵𝑉 → ( ∀ 𝑦𝐼 𝐶𝐵 → ∀ 𝑦𝐼 𝐶 ∈ 𝒫 𝐵 ) )
4 3 imp ( ( 𝐵𝑉 ∧ ∀ 𝑦𝐼 𝐶𝐵 ) → ∀ 𝑦𝐼 𝐶 ∈ 𝒫 𝐵 )
5 eqid ( 𝑦𝐼𝐶 ) = ( 𝑦𝐼𝐶 )
6 5 fmpt ( ∀ 𝑦𝐼 𝐶 ∈ 𝒫 𝐵 ↔ ( 𝑦𝐼𝐶 ) : 𝐼 ⟶ 𝒫 𝐵 )
7 4 6 sylib ( ( 𝐵𝑉 ∧ ∀ 𝑦𝐼 𝐶𝐵 ) → ( 𝑦𝐼𝐶 ) : 𝐼 ⟶ 𝒫 𝐵 )
8 elrfirn ( ( 𝐵𝑉 ∧ ( 𝑦𝐼𝐶 ) : 𝐼 ⟶ 𝒫 𝐵 ) → ( 𝐴 ∈ ( fi ‘ ( { 𝐵 } ∪ ran ( 𝑦𝐼𝐶 ) ) ) ↔ ∃ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) 𝐴 = ( 𝐵 𝑧𝑣 ( ( 𝑦𝐼𝐶 ) ‘ 𝑧 ) ) ) )
9 7 8 syldan ( ( 𝐵𝑉 ∧ ∀ 𝑦𝐼 𝐶𝐵 ) → ( 𝐴 ∈ ( fi ‘ ( { 𝐵 } ∪ ran ( 𝑦𝐼𝐶 ) ) ) ↔ ∃ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) 𝐴 = ( 𝐵 𝑧𝑣 ( ( 𝑦𝐼𝐶 ) ‘ 𝑧 ) ) ) )
10 inss1 ( 𝒫 𝐼 ∩ Fin ) ⊆ 𝒫 𝐼
11 10 sseli ( 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) → 𝑣 ∈ 𝒫 𝐼 )
12 11 elpwid ( 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) → 𝑣𝐼 )
13 nffvmpt1 𝑦 ( ( 𝑦𝐼𝐶 ) ‘ 𝑧 )
14 nfcv 𝑧 ( ( 𝑦𝐼𝐶 ) ‘ 𝑦 )
15 fveq2 ( 𝑧 = 𝑦 → ( ( 𝑦𝐼𝐶 ) ‘ 𝑧 ) = ( ( 𝑦𝐼𝐶 ) ‘ 𝑦 ) )
16 13 14 15 cbviin 𝑧𝑣 ( ( 𝑦𝐼𝐶 ) ‘ 𝑧 ) = 𝑦𝑣 ( ( 𝑦𝐼𝐶 ) ‘ 𝑦 )
17 simplr ( ( ( 𝐵𝑉𝑦𝐼 ) ∧ 𝐶𝐵 ) → 𝑦𝐼 )
18 simpll ( ( ( 𝐵𝑉𝑦𝐼 ) ∧ 𝐶𝐵 ) → 𝐵𝑉 )
19 simpr ( ( ( 𝐵𝑉𝑦𝐼 ) ∧ 𝐶𝐵 ) → 𝐶𝐵 )
20 18 19 ssexd ( ( ( 𝐵𝑉𝑦𝐼 ) ∧ 𝐶𝐵 ) → 𝐶 ∈ V )
21 5 fvmpt2 ( ( 𝑦𝐼𝐶 ∈ V ) → ( ( 𝑦𝐼𝐶 ) ‘ 𝑦 ) = 𝐶 )
22 17 20 21 syl2anc ( ( ( 𝐵𝑉𝑦𝐼 ) ∧ 𝐶𝐵 ) → ( ( 𝑦𝐼𝐶 ) ‘ 𝑦 ) = 𝐶 )
23 22 ex ( ( 𝐵𝑉𝑦𝐼 ) → ( 𝐶𝐵 → ( ( 𝑦𝐼𝐶 ) ‘ 𝑦 ) = 𝐶 ) )
24 23 ralimdva ( 𝐵𝑉 → ( ∀ 𝑦𝐼 𝐶𝐵 → ∀ 𝑦𝐼 ( ( 𝑦𝐼𝐶 ) ‘ 𝑦 ) = 𝐶 ) )
25 24 imp ( ( 𝐵𝑉 ∧ ∀ 𝑦𝐼 𝐶𝐵 ) → ∀ 𝑦𝐼 ( ( 𝑦𝐼𝐶 ) ‘ 𝑦 ) = 𝐶 )
26 ssralv ( 𝑣𝐼 → ( ∀ 𝑦𝐼 ( ( 𝑦𝐼𝐶 ) ‘ 𝑦 ) = 𝐶 → ∀ 𝑦𝑣 ( ( 𝑦𝐼𝐶 ) ‘ 𝑦 ) = 𝐶 ) )
27 25 26 mpan9 ( ( ( 𝐵𝑉 ∧ ∀ 𝑦𝐼 𝐶𝐵 ) ∧ 𝑣𝐼 ) → ∀ 𝑦𝑣 ( ( 𝑦𝐼𝐶 ) ‘ 𝑦 ) = 𝐶 )
28 iineq2 ( ∀ 𝑦𝑣 ( ( 𝑦𝐼𝐶 ) ‘ 𝑦 ) = 𝐶 𝑦𝑣 ( ( 𝑦𝐼𝐶 ) ‘ 𝑦 ) = 𝑦𝑣 𝐶 )
29 27 28 syl ( ( ( 𝐵𝑉 ∧ ∀ 𝑦𝐼 𝐶𝐵 ) ∧ 𝑣𝐼 ) → 𝑦𝑣 ( ( 𝑦𝐼𝐶 ) ‘ 𝑦 ) = 𝑦𝑣 𝐶 )
30 16 29 eqtrid ( ( ( 𝐵𝑉 ∧ ∀ 𝑦𝐼 𝐶𝐵 ) ∧ 𝑣𝐼 ) → 𝑧𝑣 ( ( 𝑦𝐼𝐶 ) ‘ 𝑧 ) = 𝑦𝑣 𝐶 )
31 30 ineq2d ( ( ( 𝐵𝑉 ∧ ∀ 𝑦𝐼 𝐶𝐵 ) ∧ 𝑣𝐼 ) → ( 𝐵 𝑧𝑣 ( ( 𝑦𝐼𝐶 ) ‘ 𝑧 ) ) = ( 𝐵 𝑦𝑣 𝐶 ) )
32 31 eqeq2d ( ( ( 𝐵𝑉 ∧ ∀ 𝑦𝐼 𝐶𝐵 ) ∧ 𝑣𝐼 ) → ( 𝐴 = ( 𝐵 𝑧𝑣 ( ( 𝑦𝐼𝐶 ) ‘ 𝑧 ) ) ↔ 𝐴 = ( 𝐵 𝑦𝑣 𝐶 ) ) )
33 12 32 sylan2 ( ( ( 𝐵𝑉 ∧ ∀ 𝑦𝐼 𝐶𝐵 ) ∧ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) ) → ( 𝐴 = ( 𝐵 𝑧𝑣 ( ( 𝑦𝐼𝐶 ) ‘ 𝑧 ) ) ↔ 𝐴 = ( 𝐵 𝑦𝑣 𝐶 ) ) )
34 33 rexbidva ( ( 𝐵𝑉 ∧ ∀ 𝑦𝐼 𝐶𝐵 ) → ( ∃ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) 𝐴 = ( 𝐵 𝑧𝑣 ( ( 𝑦𝐼𝐶 ) ‘ 𝑧 ) ) ↔ ∃ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) 𝐴 = ( 𝐵 𝑦𝑣 𝐶 ) ) )
35 9 34 bitrd ( ( 𝐵𝑉 ∧ ∀ 𝑦𝐼 𝐶𝐵 ) → ( 𝐴 ∈ ( fi ‘ ( { 𝐵 } ∪ ran ( 𝑦𝐼𝐶 ) ) ) ↔ ∃ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) 𝐴 = ( 𝐵 𝑦𝑣 𝐶 ) ) )