Description: Membership in a restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | elrint | ⊢ ( 𝑋 ∈ ( 𝐴 ∩ ∩ 𝐵 ) ↔ ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 𝑋 ∈ 𝑦 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin | ⊢ ( 𝑋 ∈ ( 𝐴 ∩ ∩ 𝐵 ) ↔ ( 𝑋 ∈ 𝐴 ∧ 𝑋 ∈ ∩ 𝐵 ) ) | |
2 | elintg | ⊢ ( 𝑋 ∈ 𝐴 → ( 𝑋 ∈ ∩ 𝐵 ↔ ∀ 𝑦 ∈ 𝐵 𝑋 ∈ 𝑦 ) ) | |
3 | 2 | pm5.32i | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑋 ∈ ∩ 𝐵 ) ↔ ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 𝑋 ∈ 𝑦 ) ) |
4 | 1 3 | bitri | ⊢ ( 𝑋 ∈ ( 𝐴 ∩ ∩ 𝐵 ) ↔ ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 𝑋 ∈ 𝑦 ) ) |