Metamath Proof Explorer


Theorem elrint

Description: Membership in a restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015)

Ref Expression
Assertion elrint ( 𝑋 ∈ ( 𝐴 𝐵 ) ↔ ( 𝑋𝐴 ∧ ∀ 𝑦𝐵 𝑋𝑦 ) )

Proof

Step Hyp Ref Expression
1 elin ( 𝑋 ∈ ( 𝐴 𝐵 ) ↔ ( 𝑋𝐴𝑋 𝐵 ) )
2 elintg ( 𝑋𝐴 → ( 𝑋 𝐵 ↔ ∀ 𝑦𝐵 𝑋𝑦 ) )
3 2 pm5.32i ( ( 𝑋𝐴𝑋 𝐵 ) ↔ ( 𝑋𝐴 ∧ ∀ 𝑦𝐵 𝑋𝑦 ) )
4 1 3 bitri ( 𝑋 ∈ ( 𝐴 𝐵 ) ↔ ( 𝑋𝐴 ∧ ∀ 𝑦𝐵 𝑋𝑦 ) )