Description: Membership in a restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elrint | ⊢ ( 𝑋 ∈ ( 𝐴 ∩ ∩ 𝐵 ) ↔ ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 𝑋 ∈ 𝑦 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elin | ⊢ ( 𝑋 ∈ ( 𝐴 ∩ ∩ 𝐵 ) ↔ ( 𝑋 ∈ 𝐴 ∧ 𝑋 ∈ ∩ 𝐵 ) ) | |
| 2 | elintg | ⊢ ( 𝑋 ∈ 𝐴 → ( 𝑋 ∈ ∩ 𝐵 ↔ ∀ 𝑦 ∈ 𝐵 𝑋 ∈ 𝑦 ) ) | |
| 3 | 2 | pm5.32i | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑋 ∈ ∩ 𝐵 ) ↔ ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 𝑋 ∈ 𝑦 ) ) | 
| 4 | 1 3 | bitri | ⊢ ( 𝑋 ∈ ( 𝐴 ∩ ∩ 𝐵 ) ↔ ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 𝑋 ∈ 𝑦 ) ) |