Step |
Hyp |
Ref |
Expression |
1 |
|
elrlocbasi.x |
⊢ ( 𝜑 → 𝑋 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) ) |
2 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 × 𝑆 ) ) ∧ 𝑋 = [ 𝑧 ] ∼ ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑧 = 〈 𝑎 , 𝑏 〉 ) → 𝑋 = [ 𝑧 ] ∼ ) |
3 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 × 𝑆 ) ) ∧ 𝑋 = [ 𝑧 ] ∼ ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑧 = 〈 𝑎 , 𝑏 〉 ) → 𝑧 = 〈 𝑎 , 𝑏 〉 ) |
4 |
3
|
eceq1d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 × 𝑆 ) ) ∧ 𝑋 = [ 𝑧 ] ∼ ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑧 = 〈 𝑎 , 𝑏 〉 ) → [ 𝑧 ] ∼ = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) |
5 |
2 4
|
eqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 × 𝑆 ) ) ∧ 𝑋 = [ 𝑧 ] ∼ ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑧 = 〈 𝑎 , 𝑏 〉 ) → 𝑋 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) |
6 |
|
elxp2 |
⊢ ( 𝑧 ∈ ( 𝐵 × 𝑆 ) ↔ ∃ 𝑎 ∈ 𝐵 ∃ 𝑏 ∈ 𝑆 𝑧 = 〈 𝑎 , 𝑏 〉 ) |
7 |
6
|
biimpi |
⊢ ( 𝑧 ∈ ( 𝐵 × 𝑆 ) → ∃ 𝑎 ∈ 𝐵 ∃ 𝑏 ∈ 𝑆 𝑧 = 〈 𝑎 , 𝑏 〉 ) |
8 |
7
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 × 𝑆 ) ) ∧ 𝑋 = [ 𝑧 ] ∼ ) → ∃ 𝑎 ∈ 𝐵 ∃ 𝑏 ∈ 𝑆 𝑧 = 〈 𝑎 , 𝑏 〉 ) |
9 |
5 8
|
reximddv2 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 × 𝑆 ) ) ∧ 𝑋 = [ 𝑧 ] ∼ ) → ∃ 𝑎 ∈ 𝐵 ∃ 𝑏 ∈ 𝑆 𝑋 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) |
10 |
|
elqsi |
⊢ ( 𝑋 ∈ ( ( 𝐵 × 𝑆 ) / ∼ ) → ∃ 𝑧 ∈ ( 𝐵 × 𝑆 ) 𝑋 = [ 𝑧 ] ∼ ) |
11 |
1 10
|
syl |
⊢ ( 𝜑 → ∃ 𝑧 ∈ ( 𝐵 × 𝑆 ) 𝑋 = [ 𝑧 ] ∼ ) |
12 |
9 11
|
r19.29a |
⊢ ( 𝜑 → ∃ 𝑎 ∈ 𝐵 ∃ 𝑏 ∈ 𝑆 𝑋 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) |