Metamath Proof Explorer


Theorem elrlocbasi

Description: Membership in the basis of a ring localization. (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Hypothesis elrlocbasi.x ( 𝜑𝑋 ∈ ( ( 𝐵 × 𝑆 ) / ) )
Assertion elrlocbasi ( 𝜑 → ∃ 𝑎𝐵𝑏𝑆 𝑋 = [ ⟨ 𝑎 , 𝑏 ⟩ ] )

Proof

Step Hyp Ref Expression
1 elrlocbasi.x ( 𝜑𝑋 ∈ ( ( 𝐵 × 𝑆 ) / ) )
2 simp-4r ( ( ( ( ( ( 𝜑𝑧 ∈ ( 𝐵 × 𝑆 ) ) ∧ 𝑋 = [ 𝑧 ] ) ∧ 𝑎𝐵 ) ∧ 𝑏𝑆 ) ∧ 𝑧 = ⟨ 𝑎 , 𝑏 ⟩ ) → 𝑋 = [ 𝑧 ] )
3 simpr ( ( ( ( ( ( 𝜑𝑧 ∈ ( 𝐵 × 𝑆 ) ) ∧ 𝑋 = [ 𝑧 ] ) ∧ 𝑎𝐵 ) ∧ 𝑏𝑆 ) ∧ 𝑧 = ⟨ 𝑎 , 𝑏 ⟩ ) → 𝑧 = ⟨ 𝑎 , 𝑏 ⟩ )
4 3 eceq1d ( ( ( ( ( ( 𝜑𝑧 ∈ ( 𝐵 × 𝑆 ) ) ∧ 𝑋 = [ 𝑧 ] ) ∧ 𝑎𝐵 ) ∧ 𝑏𝑆 ) ∧ 𝑧 = ⟨ 𝑎 , 𝑏 ⟩ ) → [ 𝑧 ] = [ ⟨ 𝑎 , 𝑏 ⟩ ] )
5 2 4 eqtrd ( ( ( ( ( ( 𝜑𝑧 ∈ ( 𝐵 × 𝑆 ) ) ∧ 𝑋 = [ 𝑧 ] ) ∧ 𝑎𝐵 ) ∧ 𝑏𝑆 ) ∧ 𝑧 = ⟨ 𝑎 , 𝑏 ⟩ ) → 𝑋 = [ ⟨ 𝑎 , 𝑏 ⟩ ] )
6 elxp2 ( 𝑧 ∈ ( 𝐵 × 𝑆 ) ↔ ∃ 𝑎𝐵𝑏𝑆 𝑧 = ⟨ 𝑎 , 𝑏 ⟩ )
7 6 biimpi ( 𝑧 ∈ ( 𝐵 × 𝑆 ) → ∃ 𝑎𝐵𝑏𝑆 𝑧 = ⟨ 𝑎 , 𝑏 ⟩ )
8 7 ad2antlr ( ( ( 𝜑𝑧 ∈ ( 𝐵 × 𝑆 ) ) ∧ 𝑋 = [ 𝑧 ] ) → ∃ 𝑎𝐵𝑏𝑆 𝑧 = ⟨ 𝑎 , 𝑏 ⟩ )
9 5 8 reximddv2 ( ( ( 𝜑𝑧 ∈ ( 𝐵 × 𝑆 ) ) ∧ 𝑋 = [ 𝑧 ] ) → ∃ 𝑎𝐵𝑏𝑆 𝑋 = [ ⟨ 𝑎 , 𝑏 ⟩ ] )
10 elqsi ( 𝑋 ∈ ( ( 𝐵 × 𝑆 ) / ) → ∃ 𝑧 ∈ ( 𝐵 × 𝑆 ) 𝑋 = [ 𝑧 ] )
11 1 10 syl ( 𝜑 → ∃ 𝑧 ∈ ( 𝐵 × 𝑆 ) 𝑋 = [ 𝑧 ] )
12 9 11 r19.29a ( 𝜑 → ∃ 𝑎𝐵𝑏𝑆 𝑋 = [ ⟨ 𝑎 , 𝑏 ⟩ ] )