Metamath Proof Explorer


Theorem elrn

Description: Membership in a range. (Contributed by NM, 2-Apr-2004)

Ref Expression
Hypothesis elrn.1 𝐴 ∈ V
Assertion elrn ( 𝐴 ∈ ran 𝐵 ↔ ∃ 𝑥 𝑥 𝐵 𝐴 )

Proof

Step Hyp Ref Expression
1 elrn.1 𝐴 ∈ V
2 elrng ( 𝐴 ∈ V → ( 𝐴 ∈ ran 𝐵 ↔ ∃ 𝑥 𝑥 𝐵 𝐴 ) )
3 1 2 ax-mp ( 𝐴 ∈ ran 𝐵 ↔ ∃ 𝑥 𝑥 𝐵 𝐴 )