Metamath Proof Explorer


Theorem elrn2

Description: Membership in a range. (Contributed by NM, 10-Jul-1994)

Ref Expression
Hypothesis elrn.1 𝐴 ∈ V
Assertion elrn2 ( 𝐴 ∈ ran 𝐵 ↔ ∃ 𝑥𝑥 , 𝐴 ⟩ ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 elrn.1 𝐴 ∈ V
2 elrn2g ( 𝐴 ∈ V → ( 𝐴 ∈ ran 𝐵 ↔ ∃ 𝑥𝑥 , 𝐴 ⟩ ∈ 𝐵 ) )
3 1 2 ax-mp ( 𝐴 ∈ ran 𝐵 ↔ ∃ 𝑥𝑥 , 𝐴 ⟩ ∈ 𝐵 )