Metamath Proof Explorer


Theorem elrn2g

Description: Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011)

Ref Expression
Assertion elrn2g ( 𝐴𝑉 → ( 𝐴 ∈ ran 𝐵 ↔ ∃ 𝑥𝑥 , 𝐴 ⟩ ∈ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 opeq2 ( 𝑦 = 𝐴 → ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑥 , 𝐴 ⟩ )
2 1 eleq1d ( 𝑦 = 𝐴 → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ↔ ⟨ 𝑥 , 𝐴 ⟩ ∈ 𝐵 ) )
3 2 exbidv ( 𝑦 = 𝐴 → ( ∃ 𝑥𝑥 , 𝑦 ⟩ ∈ 𝐵 ↔ ∃ 𝑥𝑥 , 𝐴 ⟩ ∈ 𝐵 ) )
4 dfrn3 ran 𝐵 = { 𝑦 ∣ ∃ 𝑥𝑥 , 𝑦 ⟩ ∈ 𝐵 }
5 3 4 elab2g ( 𝐴𝑉 → ( 𝐴 ∈ ran 𝐵 ↔ ∃ 𝑥𝑥 , 𝐴 ⟩ ∈ 𝐵 ) )