Metamath Proof Explorer


Theorem elrng

Description: Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011)

Ref Expression
Assertion elrng ( 𝐴𝑉 → ( 𝐴 ∈ ran 𝐵 ↔ ∃ 𝑥 𝑥 𝐵 𝐴 ) )

Proof

Step Hyp Ref Expression
1 elrn2g ( 𝐴𝑉 → ( 𝐴 ∈ ran 𝐵 ↔ ∃ 𝑥𝑥 , 𝐴 ⟩ ∈ 𝐵 ) )
2 df-br ( 𝑥 𝐵 𝐴 ↔ ⟨ 𝑥 , 𝐴 ⟩ ∈ 𝐵 )
3 2 exbii ( ∃ 𝑥 𝑥 𝐵 𝐴 ↔ ∃ 𝑥𝑥 , 𝐴 ⟩ ∈ 𝐵 )
4 1 3 bitr4di ( 𝐴𝑉 → ( 𝐴 ∈ ran 𝐵 ↔ ∃ 𝑥 𝑥 𝐵 𝐴 ) )