Step |
Hyp |
Ref |
Expression |
1 |
|
rngop.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) |
2 |
|
elrnmpo.1 |
⊢ 𝐶 ∈ V |
3 |
1
|
rnmpo |
⊢ ran 𝐹 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 } |
4 |
3
|
eleq2i |
⊢ ( 𝐷 ∈ ran 𝐹 ↔ 𝐷 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 } ) |
5 |
|
eleq1 |
⊢ ( 𝐷 = 𝐶 → ( 𝐷 ∈ V ↔ 𝐶 ∈ V ) ) |
6 |
2 5
|
mpbiri |
⊢ ( 𝐷 = 𝐶 → 𝐷 ∈ V ) |
7 |
6
|
rexlimivw |
⊢ ( ∃ 𝑦 ∈ 𝐵 𝐷 = 𝐶 → 𝐷 ∈ V ) |
8 |
7
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝐷 = 𝐶 → 𝐷 ∈ V ) |
9 |
|
eqeq1 |
⊢ ( 𝑧 = 𝐷 → ( 𝑧 = 𝐶 ↔ 𝐷 = 𝐶 ) ) |
10 |
9
|
2rexbidv |
⊢ ( 𝑧 = 𝐷 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝐷 = 𝐶 ) ) |
11 |
8 10
|
elab3 |
⊢ ( 𝐷 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 } ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝐷 = 𝐶 ) |
12 |
4 11
|
bitri |
⊢ ( 𝐷 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝐷 = 𝐶 ) |