Metamath Proof Explorer


Theorem elrnmpo

Description: Membership in the range of an operation class abstraction. (Contributed by NM, 1-Aug-2004) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypotheses rngop.1 𝐹 = ( 𝑥𝐴 , 𝑦𝐵𝐶 )
elrnmpo.1 𝐶 ∈ V
Assertion elrnmpo ( 𝐷 ∈ ran 𝐹 ↔ ∃ 𝑥𝐴𝑦𝐵 𝐷 = 𝐶 )

Proof

Step Hyp Ref Expression
1 rngop.1 𝐹 = ( 𝑥𝐴 , 𝑦𝐵𝐶 )
2 elrnmpo.1 𝐶 ∈ V
3 1 rnmpo ran 𝐹 = { 𝑧 ∣ ∃ 𝑥𝐴𝑦𝐵 𝑧 = 𝐶 }
4 3 eleq2i ( 𝐷 ∈ ran 𝐹𝐷 ∈ { 𝑧 ∣ ∃ 𝑥𝐴𝑦𝐵 𝑧 = 𝐶 } )
5 eleq1 ( 𝐷 = 𝐶 → ( 𝐷 ∈ V ↔ 𝐶 ∈ V ) )
6 2 5 mpbiri ( 𝐷 = 𝐶𝐷 ∈ V )
7 6 rexlimivw ( ∃ 𝑦𝐵 𝐷 = 𝐶𝐷 ∈ V )
8 7 rexlimivw ( ∃ 𝑥𝐴𝑦𝐵 𝐷 = 𝐶𝐷 ∈ V )
9 eqeq1 ( 𝑧 = 𝐷 → ( 𝑧 = 𝐶𝐷 = 𝐶 ) )
10 9 2rexbidv ( 𝑧 = 𝐷 → ( ∃ 𝑥𝐴𝑦𝐵 𝑧 = 𝐶 ↔ ∃ 𝑥𝐴𝑦𝐵 𝐷 = 𝐶 ) )
11 8 10 elab3 ( 𝐷 ∈ { 𝑧 ∣ ∃ 𝑥𝐴𝑦𝐵 𝑧 = 𝐶 } ↔ ∃ 𝑥𝐴𝑦𝐵 𝐷 = 𝐶 )
12 4 11 bitri ( 𝐷 ∈ ran 𝐹 ↔ ∃ 𝑥𝐴𝑦𝐵 𝐷 = 𝐶 )