Metamath Proof Explorer


Theorem elrnmpoid

Description: Membership in the range of an operation class abstraction. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis elrnmpoid.1 𝐹 = ( 𝑥𝐴 , 𝑦𝐵𝐶 )
Assertion elrnmpoid ( ( 𝑥𝐴𝑦𝐵 ∧ ∀ 𝑥𝐴𝑦𝐵 𝐶𝑉 ) → ( 𝑥 𝐹 𝑦 ) ∈ ran 𝐹 )

Proof

Step Hyp Ref Expression
1 elrnmpoid.1 𝐹 = ( 𝑥𝐴 , 𝑦𝐵𝐶 )
2 1 fnmpo ( ∀ 𝑥𝐴𝑦𝐵 𝐶𝑉𝐹 Fn ( 𝐴 × 𝐵 ) )
3 2 3ad2ant3 ( ( 𝑥𝐴𝑦𝐵 ∧ ∀ 𝑥𝐴𝑦𝐵 𝐶𝑉 ) → 𝐹 Fn ( 𝐴 × 𝐵 ) )
4 simp1 ( ( 𝑥𝐴𝑦𝐵 ∧ ∀ 𝑥𝐴𝑦𝐵 𝐶𝑉 ) → 𝑥𝐴 )
5 simp2 ( ( 𝑥𝐴𝑦𝐵 ∧ ∀ 𝑥𝐴𝑦𝐵 𝐶𝑉 ) → 𝑦𝐵 )
6 fnovrn ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝑥𝐴𝑦𝐵 ) → ( 𝑥 𝐹 𝑦 ) ∈ ran 𝐹 )
7 3 4 5 6 syl3anc ( ( 𝑥𝐴𝑦𝐵 ∧ ∀ 𝑥𝐴𝑦𝐵 𝐶𝑉 ) → ( 𝑥 𝐹 𝑦 ) ∈ ran 𝐹 )