Description: Elementhood in an image set. (Contributed by Mario Carneiro, 12-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnmpt.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| elrnmpt1s.1 | ⊢ ( 𝑥 = 𝐷 → 𝐵 = 𝐶 ) | ||
| Assertion | elrnmpt1s | ⊢ ( ( 𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉 ) → 𝐶 ∈ ran 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnmpt.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 2 | elrnmpt1s.1 | ⊢ ( 𝑥 = 𝐷 → 𝐵 = 𝐶 ) | |
| 3 | eqid | ⊢ 𝐶 = 𝐶 | |
| 4 | 2 | rspceeqv | ⊢ ( ( 𝐷 ∈ 𝐴 ∧ 𝐶 = 𝐶 ) → ∃ 𝑥 ∈ 𝐴 𝐶 = 𝐵 ) |
| 5 | 3 4 | mpan2 | ⊢ ( 𝐷 ∈ 𝐴 → ∃ 𝑥 ∈ 𝐴 𝐶 = 𝐵 ) |
| 6 | 1 | elrnmpt | ⊢ ( 𝐶 ∈ 𝑉 → ( 𝐶 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝐴 𝐶 = 𝐵 ) ) |
| 7 | 6 | biimparc | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝐶 = 𝐵 ∧ 𝐶 ∈ 𝑉 ) → 𝐶 ∈ ran 𝐹 ) |
| 8 | 5 7 | sylan | ⊢ ( ( 𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉 ) → 𝐶 ∈ ran 𝐹 ) |