Metamath Proof Explorer
		
		
		
		Description:  The range of a function in maps-to notation.  (Contributed by Glauco
       Siliprandi, 17-Aug-2020)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | elrnmptd.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
					
						|  |  | elrnmptd.x | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝐴 𝐶  =  𝐵 ) | 
					
						|  |  | elrnmptd.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑉 ) | 
				
					|  | Assertion | elrnmptd | ⊢  ( 𝜑  →  𝐶  ∈  ran  𝐹 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elrnmptd.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 2 |  | elrnmptd.x | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝐴 𝐶  =  𝐵 ) | 
						
							| 3 |  | elrnmptd.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑉 ) | 
						
							| 4 | 1 | elrnmpt | ⊢ ( 𝐶  ∈  𝑉  →  ( 𝐶  ∈  ran  𝐹  ↔  ∃ 𝑥  ∈  𝐴 𝐶  =  𝐵 ) ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝜑  →  ( 𝐶  ∈  ran  𝐹  ↔  ∃ 𝑥  ∈  𝐴 𝐶  =  𝐵 ) ) | 
						
							| 6 | 2 5 | mpbird | ⊢ ( 𝜑  →  𝐶  ∈  ran  𝐹 ) |