Metamath Proof Explorer


Theorem elrnmptdv

Description: Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses elrnmptdv.1 𝐹 = ( 𝑥𝐴𝐵 )
elrnmptdv.2 ( 𝜑𝐶𝐴 )
elrnmptdv.3 ( 𝜑𝐷𝑉 )
elrnmptdv.4 ( ( 𝜑𝑥 = 𝐶 ) → 𝐷 = 𝐵 )
Assertion elrnmptdv ( 𝜑𝐷 ∈ ran 𝐹 )

Proof

Step Hyp Ref Expression
1 elrnmptdv.1 𝐹 = ( 𝑥𝐴𝐵 )
2 elrnmptdv.2 ( 𝜑𝐶𝐴 )
3 elrnmptdv.3 ( 𝜑𝐷𝑉 )
4 elrnmptdv.4 ( ( 𝜑𝑥 = 𝐶 ) → 𝐷 = 𝐵 )
5 4 2 rspcime ( 𝜑 → ∃ 𝑥𝐴 𝐷 = 𝐵 )
6 1 elrnmpt ( 𝐷𝑉 → ( 𝐷 ∈ ran 𝐹 ↔ ∃ 𝑥𝐴 𝐷 = 𝐵 ) )
7 3 6 syl ( 𝜑 → ( 𝐷 ∈ ran 𝐹 ↔ ∃ 𝑥𝐴 𝐷 = 𝐵 ) )
8 5 7 mpbird ( 𝜑𝐷 ∈ ran 𝐹 )