Step |
Hyp |
Ref |
Expression |
1 |
|
rnmpt.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
2 |
1
|
rnmpt |
⊢ ran 𝐹 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } |
3 |
2
|
eleq2i |
⊢ ( 𝐶 ∈ ran 𝐹 ↔ 𝐶 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) |
4 |
|
r19.29 |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐴 𝐶 = 𝐵 ) → ∃ 𝑥 ∈ 𝐴 ( 𝐵 ∈ 𝑉 ∧ 𝐶 = 𝐵 ) ) |
5 |
|
eleq1 |
⊢ ( 𝐶 = 𝐵 → ( 𝐶 ∈ 𝑉 ↔ 𝐵 ∈ 𝑉 ) ) |
6 |
5
|
biimparc |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 = 𝐵 ) → 𝐶 ∈ 𝑉 ) |
7 |
6
|
elexd |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 = 𝐵 ) → 𝐶 ∈ V ) |
8 |
7
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝐵 ∈ 𝑉 ∧ 𝐶 = 𝐵 ) → 𝐶 ∈ V ) |
9 |
4 8
|
syl |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐴 𝐶 = 𝐵 ) → 𝐶 ∈ V ) |
10 |
9
|
ex |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ( ∃ 𝑥 ∈ 𝐴 𝐶 = 𝐵 → 𝐶 ∈ V ) ) |
11 |
|
eqeq1 |
⊢ ( 𝑦 = 𝐶 → ( 𝑦 = 𝐵 ↔ 𝐶 = 𝐵 ) ) |
12 |
11
|
rexbidv |
⊢ ( 𝑦 = 𝐶 → ( ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝐶 = 𝐵 ) ) |
13 |
12
|
elab3g |
⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝐶 = 𝐵 → 𝐶 ∈ V ) → ( 𝐶 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ↔ ∃ 𝑥 ∈ 𝐴 𝐶 = 𝐵 ) ) |
14 |
10 13
|
syl |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ( 𝐶 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ↔ ∃ 𝑥 ∈ 𝐴 𝐶 = 𝐵 ) ) |
15 |
3 14
|
bitrid |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ( 𝐶 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝐴 𝐶 = 𝐵 ) ) |