Metamath Proof Explorer


Theorem elrnmptg

Description: Membership in the range of a function. (Contributed by NM, 27-Aug-2007) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypothesis rnmpt.1 𝐹 = ( 𝑥𝐴𝐵 )
Assertion elrnmptg ( ∀ 𝑥𝐴 𝐵𝑉 → ( 𝐶 ∈ ran 𝐹 ↔ ∃ 𝑥𝐴 𝐶 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 rnmpt.1 𝐹 = ( 𝑥𝐴𝐵 )
2 1 rnmpt ran 𝐹 = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 }
3 2 eleq2i ( 𝐶 ∈ ran 𝐹𝐶 ∈ { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 } )
4 r19.29 ( ( ∀ 𝑥𝐴 𝐵𝑉 ∧ ∃ 𝑥𝐴 𝐶 = 𝐵 ) → ∃ 𝑥𝐴 ( 𝐵𝑉𝐶 = 𝐵 ) )
5 eleq1 ( 𝐶 = 𝐵 → ( 𝐶𝑉𝐵𝑉 ) )
6 5 biimparc ( ( 𝐵𝑉𝐶 = 𝐵 ) → 𝐶𝑉 )
7 6 elexd ( ( 𝐵𝑉𝐶 = 𝐵 ) → 𝐶 ∈ V )
8 7 rexlimivw ( ∃ 𝑥𝐴 ( 𝐵𝑉𝐶 = 𝐵 ) → 𝐶 ∈ V )
9 4 8 syl ( ( ∀ 𝑥𝐴 𝐵𝑉 ∧ ∃ 𝑥𝐴 𝐶 = 𝐵 ) → 𝐶 ∈ V )
10 9 ex ( ∀ 𝑥𝐴 𝐵𝑉 → ( ∃ 𝑥𝐴 𝐶 = 𝐵𝐶 ∈ V ) )
11 eqeq1 ( 𝑦 = 𝐶 → ( 𝑦 = 𝐵𝐶 = 𝐵 ) )
12 11 rexbidv ( 𝑦 = 𝐶 → ( ∃ 𝑥𝐴 𝑦 = 𝐵 ↔ ∃ 𝑥𝐴 𝐶 = 𝐵 ) )
13 12 elab3g ( ( ∃ 𝑥𝐴 𝐶 = 𝐵𝐶 ∈ V ) → ( 𝐶 ∈ { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 } ↔ ∃ 𝑥𝐴 𝐶 = 𝐵 ) )
14 10 13 syl ( ∀ 𝑥𝐴 𝐵𝑉 → ( 𝐶 ∈ { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 } ↔ ∃ 𝑥𝐴 𝐶 = 𝐵 ) )
15 3 14 bitrid ( ∀ 𝑥𝐴 𝐵𝑉 → ( 𝐶 ∈ ran 𝐹 ↔ ∃ 𝑥𝐴 𝐶 = 𝐵 ) )