Metamath Proof Explorer


Theorem elrnres

Description: Element of the range of a restriction. (Contributed by Peter Mazsa, 26-Dec-2018)

Ref Expression
Assertion elrnres ( 𝐵𝑉 → ( 𝐵 ∈ ran ( 𝑅𝐴 ) ↔ ∃ 𝑥𝐴 𝑥 𝑅 𝐵 ) )

Proof

Step Hyp Ref Expression
1 elrng ( 𝐵𝑉 → ( 𝐵 ∈ ran ( 𝑅𝐴 ) ↔ ∃ 𝑥 𝑥 ( 𝑅𝐴 ) 𝐵 ) )
2 brres ( 𝐵𝑉 → ( 𝑥 ( 𝑅𝐴 ) 𝐵 ↔ ( 𝑥𝐴𝑥 𝑅 𝐵 ) ) )
3 2 exbidv ( 𝐵𝑉 → ( ∃ 𝑥 𝑥 ( 𝑅𝐴 ) 𝐵 ↔ ∃ 𝑥 ( 𝑥𝐴𝑥 𝑅 𝐵 ) ) )
4 1 3 bitrd ( 𝐵𝑉 → ( 𝐵 ∈ ran ( 𝑅𝐴 ) ↔ ∃ 𝑥 ( 𝑥𝐴𝑥 𝑅 𝐵 ) ) )
5 df-rex ( ∃ 𝑥𝐴 𝑥 𝑅 𝐵 ↔ ∃ 𝑥 ( 𝑥𝐴𝑥 𝑅 𝐵 ) )
6 4 5 bitr4di ( 𝐵𝑉 → ( 𝐵 ∈ ran ( 𝑅𝐴 ) ↔ ∃ 𝑥𝐴 𝑥 𝑅 𝐵 ) )