Description: Element of the range of a restriction. (Contributed by Peter Mazsa, 26-Dec-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | elrnres | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ ran ( 𝑅 ↾ 𝐴 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑥 𝑅 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrng | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ ran ( 𝑅 ↾ 𝐴 ) ↔ ∃ 𝑥 𝑥 ( 𝑅 ↾ 𝐴 ) 𝐵 ) ) | |
2 | brres | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝑥 ( 𝑅 ↾ 𝐴 ) 𝐵 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝐵 ) ) ) | |
3 | 2 | exbidv | ⊢ ( 𝐵 ∈ 𝑉 → ( ∃ 𝑥 𝑥 ( 𝑅 ↾ 𝐴 ) 𝐵 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝐵 ) ) ) |
4 | 1 3 | bitrd | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ ran ( 𝑅 ↾ 𝐴 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝐵 ) ) ) |
5 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑥 𝑅 𝐵 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝐵 ) ) | |
6 | 4 5 | bitr4di | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ ran ( 𝑅 ↾ 𝐴 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑥 𝑅 𝐵 ) ) |