Metamath Proof Explorer


Theorem elrnressn

Description: Element of the range of a restriction to a singleton. (Contributed by Peter Mazsa, 12-Jun-2024)

Ref Expression
Assertion elrnressn ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐵 ∈ ran ( 𝑅 ↾ { 𝐴 } ) ↔ 𝐴 𝑅 𝐵 ) )

Proof

Step Hyp Ref Expression
1 elrnres ( 𝐵𝑊 → ( 𝐵 ∈ ran ( 𝑅 ↾ { 𝐴 } ) ↔ ∃ 𝑥 ∈ { 𝐴 } 𝑥 𝑅 𝐵 ) )
2 breq1 ( 𝑥 = 𝐴 → ( 𝑥 𝑅 𝐵𝐴 𝑅 𝐵 ) )
3 2 rexsng ( 𝐴𝑉 → ( ∃ 𝑥 ∈ { 𝐴 } 𝑥 𝑅 𝐵𝐴 𝑅 𝐵 ) )
4 1 3 sylan9bbr ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐵 ∈ ran ( 𝑅 ↾ { 𝐴 } ) ↔ 𝐴 𝑅 𝐵 ) )