Description: Element of the range of a restriction to a singleton. (Contributed by Peter Mazsa, 12-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | elrnressn | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐵 ∈ ran ( 𝑅 ↾ { 𝐴 } ) ↔ 𝐴 𝑅 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrnres | ⊢ ( 𝐵 ∈ 𝑊 → ( 𝐵 ∈ ran ( 𝑅 ↾ { 𝐴 } ) ↔ ∃ 𝑥 ∈ { 𝐴 } 𝑥 𝑅 𝐵 ) ) | |
2 | breq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝑅 𝐵 ↔ 𝐴 𝑅 𝐵 ) ) | |
3 | 2 | rexsng | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑥 ∈ { 𝐴 } 𝑥 𝑅 𝐵 ↔ 𝐴 𝑅 𝐵 ) ) |
4 | 1 3 | sylan9bbr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐵 ∈ ran ( 𝑅 ↾ { 𝐴 } ) ↔ 𝐴 𝑅 𝐵 ) ) |