Step |
Hyp |
Ref |
Expression |
1 |
|
elfvdm |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 ∈ dom UnifOn ) |
2 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( UnifOn ‘ 𝑥 ) = ( UnifOn ‘ 𝑋 ) ) |
3 |
2
|
eleq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑈 ∈ ( UnifOn ‘ 𝑥 ) ↔ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) ) |
4 |
3
|
rspcev |
⊢ ( ( 𝑋 ∈ dom UnifOn ∧ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) → ∃ 𝑥 ∈ dom UnifOn 𝑈 ∈ ( UnifOn ‘ 𝑥 ) ) |
5 |
1 4
|
mpancom |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ∃ 𝑥 ∈ dom UnifOn 𝑈 ∈ ( UnifOn ‘ 𝑥 ) ) |
6 |
|
ustfn |
⊢ UnifOn Fn V |
7 |
|
fnfun |
⊢ ( UnifOn Fn V → Fun UnifOn ) |
8 |
|
elunirn |
⊢ ( Fun UnifOn → ( 𝑈 ∈ ∪ ran UnifOn ↔ ∃ 𝑥 ∈ dom UnifOn 𝑈 ∈ ( UnifOn ‘ 𝑥 ) ) ) |
9 |
6 7 8
|
mp2b |
⊢ ( 𝑈 ∈ ∪ ran UnifOn ↔ ∃ 𝑥 ∈ dom UnifOn 𝑈 ∈ ( UnifOn ‘ 𝑥 ) ) |
10 |
5 9
|
sylibr |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 ∈ ∪ ran UnifOn ) |