Metamath Proof Explorer


Theorem elrpd

Description: Membership in the set of positive reals. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses elrpd.1 ( 𝜑𝐴 ∈ ℝ )
elrpd.2 ( 𝜑 → 0 < 𝐴 )
Assertion elrpd ( 𝜑𝐴 ∈ ℝ+ )

Proof

Step Hyp Ref Expression
1 elrpd.1 ( 𝜑𝐴 ∈ ℝ )
2 elrpd.2 ( 𝜑 → 0 < 𝐴 )
3 elrp ( 𝐴 ∈ ℝ+ ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) )
4 1 2 3 sylanbrc ( 𝜑𝐴 ∈ ℝ+ )